

Post Graduate Programme Syllabus

School of Digital Sciences

Kerala University of Digital Sciences, Innovation and Technology (KUDSIT) Technopark Phase IV, Mangalapuram, Thiruvananthapuram, India

-2024-

School of Digital Sciences

The School of Digital Sciences positions itself across the broad areas of computational science, data analytics, and scalable data systems in various science and technologydomains. The SoDS curriculum aims to instill the concept of AI applications within STEM education. It focuses on educating students in four specific disciplines—science, technology, engineering, and mathematics—through an interdisciplinary and applied approach. The school was established as a part of the Kerala University of Digital Sciences, Innovation, and Technology (KUDSIT), also known as Digital University Kerala (DUK) in 2020 at the Technopark Phase IV Campus in Trivandrum. This document is prepared for the faculty and staff members of SoDS to provide the necessary guidance in the school's academic activities.

Vision and Mission

The vision of the school is to ensure the self-sustainability of our nation. The school aims to:

- Cater to the demand for trained human resources in the areas of STEM
- ► Foster advanced research, development, and innovation in frontier areas of Digital Sciences
- Encourage and motivate the student community to take up the future challenges of the growing IT industry
- ▶ Promote an ecosystem for social innovation and entrepreneurship

Objectives

Industry Revolution 4.0 mainly depends on artificial intelligence, and most of the developments in AI depend on the knowledge and information we gather from the data that the entire universe creates every second. As we live in the emerging data-drivenworld, decision support systems based on the insights derived from data are receiving much acceptance in every branch of science/technology or even the arts. We can considerdata analytics a trans-disciplinary subject that brings data, technology, information, statistical/mathematical analysis, and domain knowledge under a single umbrella. The success of the current era can be defined as the amount of useful data the organization is creating or gathering and gaining fruitful insights using computational methods by applying mathematical/statistical frameworks.

Despite the adoption of Industry 4.0 by several organizations, India still faces a shortage of human resources to meet the demands of industry, academia, and R&D. The parent organization of DUK, Indian Institute of Information Technology and Management Kerala (IIITMK) has made significant

progress in this direction. We offered programmes in cutting-edge technologies in data analytics, machine learning, and deep learning. To keep the momentum of our state and our country marching towards becoming the industry leader in Information Technology and to take a global leadership position for the world in the industry 4.0 revolution, we need to create trained human resources in this area. The focus of the programmes offered by the School of Digital Sciences is to develop quality human resources so that they can lead the digital transformation of our country.

Academics

Our MSc programmes are designed to cater mainly to the industry needs of Data Analysts, Data Engineers, and Data Scientists at various levels in different domains. The suitable skill sets for the industry are:

- In-depth Knowledge of Data Analytics and Machine Learning
- Decent Knowledge of Statistics and Mathematics
- Good skills in Natural Language Processing and Information retrieval
- Deep knowledge of Python Programming and Database management systems
- Basic knowledge of Computer Science
- Spatial Applications of Data Analytics/Machine Learning
- Computational methods to complement data analytics in real life problemsolving

Course Categorization

- 400 Level Advanced courses, including lecture courses with practicum, seminar-based courses, term papers, research methodology, advanced laboratory experiments/software training, research projects, hands-on training, internship/apprenticeship projects at the undergraduate level, or First-year Postgraduate theoretical and practical courses.
- 500 Level It provides an opportunity for original study or investigation in the major or field of specialization on an individual and more autonomous basis at the postgraduate level. All 500level courses should have a course project with a mandatory report submission and evaluation.

Programme Educational Objectives (PEO)

PEO1: Create globally competent data analytics/machine learning experts with leadership qualities and team spirit.

PEO2: Impart communication skills and professional ethics to students.

PEO3: Develop skills in computational problem-solving and R&D

PEO4: Engage in lifelong learning to keep pace with the emerging technology areas.

Programme learning outcomes (PO)

P01: Develop strong fundamental knowledge in the area of study

PO2: Identify, formulate, and analyze problems to reach validated conclusions.

PO3: Design techniques to solve real-life problems to meet the specified needs.

PO4: Develop communication skills to address different levels of audience.

P05: Practice ethical standards in professional conduct and research.

PO6: Acquire professional skills such as collaborative skills, the ability to write grants, entrepreneurial skills, and writing articles for scholarly journals.

Pass Criteria

As stipulated in the University Examination Manual.

Examinations

Each course level would have a different type of examination, as stipulated in the University Examination Manual.

Programme Courses (45 credits)		Univer Courses (15	Final Year Project (20 credits)	Additional Credits		
Programme Core (Mandatory)	Programme Elective (Mandatory)	Open Elective (Mandatory)	University Core Digital Access for Community Empowerment – DACE (Mandatory)	University Elective Holistic Development - HD (Mandatory)	Capstone Project/ Thesis (Mandatory)	Additional courses (optional) (Optional)
18 credits	15 credits	12 credits	6 credits	9 credits	20 credits	10 credits

Credit distribution of the M.Sc. programmes offered by the school

Project/Internship (Course Code: M5224451, 500 level)

A student is required to do a project during Semester 4 independently under the guidance of any University faculty member or as an internship project in an industry or any reputed academic/research institute. If a student opts for an internship project in an industry or any reputed academic/research institute, he must have an internal guide from the University. The project/internship aims to allow the student to participate and work in a major research/development activity. Typically, the industry internship helps the student to learn about

work culture, business processes, technologies, marketing strategies, etc. At the end of the semester, the student must submit a report on the project/internship and give an oral presentation of the project/internship carried out by him/her. The project report and the oral presentation will be evaluated by an internal committee comprising the school's faculty members, including the project guide, and an external committee constituted by the university. The project/internship carries 20 credits.

Curriculum of M.Sc. Programmes offered by SoDS

The School of Digital Sciences offers the following programmes in the academic year 2024-25

- M.Sc. in Computer Science with Specialization in Data Analytics (CSDA)
- M.Sc. in Data Analytics and Computational Science (DACS)
- M.Sc. in Data Analytics and Geoinformatics (GIS)
- M.Sc. in Data Analytics and BioAI (BioAI)

Semester-wise split of the category of all programmes

Semester I

Title of the course	Credits
	2
University core (DACE I)	3
Programme core	12
	0
Programme elective	3
University elective (HD1)	2
Total Credits	20

Semester II

Title of the course	Credits
University core (DACE II)	3

Open elective	6
Programme core	6
Programme elective	3
University elective (HD2)	2
Total Credits	20

Semester III

Title of the course	Credits
Open elective	6
Programme elective	9
University elective (HD3)	5
Total Credits	20

Semester IV

Title of the course	Credits
Internship/Thesis	20
Total Credits	20

Core Courses for each of the programmes

Course Code	Title of the Course	Credits	Level	Credit Split Lecture-Lab- Seminar- Project
M4220151	Principles and Practices in Computer	4	400	3-0-1-0
	Science (Sem I)			
M4220152	Database Systems (Sem I)	4	400	3-1-0-0
M4220153	Data Analytics and Visualization (Sem I)	4	400	2-1-0-1
M5220251	Predictive Analytics (Sem II)	3	500	1-1-0-1
M4220252	Web Technology (Sem II)	3	400	2-1-0-0

M.Sc. Data Analytics and Computational Science

Course Code	Title of the Course	Credits	Leve l	Credit Split Lecture-Lab- Seminar-Project
M4220151	Principles and Practices in Computer	4	400	3-0-1-0
	Science (Sem I)			
M4220153	Data Analytics and Visualization (Sem	4	400	2-1-0-1
	I)			
M4220154	Scientific Computing and	4	400	3-1-0-0
	Computational Techniques (Sem I)			
M5220251	Predictive Analytics (Sem II)	3	500	1-1-0-1
M4220253	Numerical Methods (Sem II)	3	400	1-1-0-1

M.Sc. Data Analytics and BioAl

Course Code	Title of the Course	Credit s	Level	Credit Split Lecture-Lab- Seminar-Project
M4220153	Data Analytics and	4	400	2-1-0-1
	Visualization (Sem I)			
M4220155	Molecular Biology (Sem I)	4	400	3-0-1-0
M4220156	Bioinformatics (Sem I)	4	400	2-1-1-0

M5220251	Predictive Analytics (Sem II)			3	500	1-1-0-1	
M4220254	NGS	and	Genome	Data	3	400	1-1-0-1
	Analysis (Sem II)						

M.Sc. Data Analytics and Geoinformatics

Course Code	Title of the Course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220153	Data Analytics and Visualization (Sem I)	4	400	2-1-0-1
M4220157	Geographic Information System (Sem I)	4	400	3-1-0-0
M4220158	Remote Sensing and Earth Observation (Sem I)	4	400	3-1-0-0
M5220251	Predictive Analytics (Sem II)	3	500	1-1-0-1
M4220255	AdvancedGeospatialAnalytics (Sem II)	3	400	1-1-0-1

Courses offered as electives

Students can opt for electives from the following list in the first/second, or third semesterbased on the recommendations of the mentor/course coordinator. The school will decide the list of electives to be offered each semester based on requirements from students and the availability of faculty.

List of Elective Courses Offered by the School of Digital Sciences

Course Code	Title of the course	Credits	For Programmes	Level	Credit Split Lecture- Lab- Seminar-Project	The semester in which the course offered
M4221151	Python Programming for	3	All	400	2-1-0-0	S1
	Data Analytics		programmes			
M4221152	DifferentialEquations	3	DACS	400	1-1-1-0	S1

M4221153	Time series analysis and SEM Modeling	3	CSDA/DACS	400	1-1-0-1	S1
M4220252	Web Technology	3	DACS/ BioAI/GIS	400	2-1-0-0	S2
M4221251	Computational Neuroscience	3	DACS/BioAI	400	2-1-0-0	S2
M4221252	Ethics in Data	3	All programmes	400	1-0-2-0	S2
M4221253	Data Structuresand Algorithms	3	All programmes	400	2-1-0-0	S2
M4221254	Computational Chemistry	3	DACS/BioAI	400	1-1-0-1	S2
M4221255	Deep learningand MLOps	3	All programmes	400	1-1-0-1	S2
M4221256	Microwave remote sensing	3	GIS	400	1-1-0-1	S2
M4221257	Natural Language Processing and Information Retrieval	3	All programmes	400	1-1-0-1	S2
M5221251	Advanced Topics in the Semantic Web and Social Network Analysis	3	All programmes	500	1-1-0-1	S2/S3
M5221252	Advanced Geospatial Programming	3	GIS	500	1-1-0-1	S2/S3
M5221253	Spatial DataAnalytics	3	CSDA/GIS	500	1-1-0-1	S2/S3
M5221254	Web and Mobile GIS	3	GIS	500	1-1-0-1	S2/S3
M5221255	Structural Biology and Drug Design	3	BioAI	500	1-1-0-1	S2/S3
M5221256	Data Security	3	All programmes	500	1-1-0-1	S2/S3

M5221257	Parallel and GPU Computing	3	CSDA/DACS	500	1-1-0-1	\$2/\$3
M5221258	Numerical Linear Algebra	3	CSDA/DACS	500	1-1-1-0	\$2/\$3
M5221351	Anomaly Detection and Fraud Analytics	3	All programmes	500	1-1-0-1	\$3
M5221352	Generative AI	3	All programmes	500	1-1-0-1	\$3
M5221353	HealthcareAnalytics	3	BioAI	500	1-1-0-1	S3
M5221354	Advanced Programming	3	All programmes	500	1-1-0-1	S3
M5221355	Thermal andHyperspectral remote sensing	3	GIS	500	1-0-1-1	\$3
M5221356	Topographic Data Analysis Techniques and Applications	3	GIS	500	1-1-0-1	\$3
M5221357	Spatial Bigdata Analytics	3	GIS	500	1-1-0-1	\$3
M5221358	Geospatial Applications in Agriculture	3	GIS	500	1-1-0-1	\$3
M5221359	Geospatial Applications for Environment and Climate Change	3	GIS	500	2-0-0-1	\$3
M5221360	Geospatial Applicationsfor HydrologicalModeling	3	GIS	500	1-1-0-1	S3
M5221361	Geospatial Applications in Urban andRegional Planning	3	GIS	500	2-0-0-1	\$3
M5221362	AI applications in agriculture	3	BioAI	500	1-1-0-1	\$3
M5221363	Computational Finance	3	DACS	500	1-1-0-1	\$3

M5221364	Data Engineering	3	All	500	1-1-0-1	S3
			programmes			
M5221365	Big Data Technologies and	3	All	500	1-1-0-1	S3
	Cloud Computing		programmes			
M5221366	Machine Learning with	3	All	500	1-1-0-1	S3
	Graphs		programmes			
M5221367	Computational Nonlinear	3	DACS	500	1-1-0-1	S 3
	Dynamics					
M5221368	Stochastic Processes and	3	CSDA/DACS	500	1-1-0-1	S 3
	Models					
M5221369	Optimization Techniques	3	All	500	1-1-0-1	S3
			programmes			

*Student may opt for any course offered by other schools/same school as open electives

Syllabus

University Core (DACE I and DACE II)-500 level

DIGITAL ACCESS FOR COMMUNITY EMPOWERMENT I

Course Cod	e Course Name	Credit	Year of Introduction					
M5220013	B Digital Access for Community	3	2024					
	Empowerment I							
Prerequisites	Prerequisites: Nil							
DEL	Digital Experience Laboratory (1	Digital Experience Laboratory (DEL), where they get exposed to various						
1 Credit	digital technologies through a set of hands-on lab projects.							
DTI	Design Thinking and Innovation (DTI), where students will be exposed to the							
1 credit	idea of applying innovative thinking in digital sciences.							
PDSC	Personal Development and Scient	fic Communication	ı (PDSC)					
1 credit								

DIGITAL ACCESS FOR COMMUNITY EMPOWERMENT II

Course Code	Course Name	Credit	Year of			
			Introduction			
M5220014	Digital Access for Community	3	2024			
	Empowerment II					
Prerequisites: Successfu	ll completion of DACE - I					
Community	Community Empowerment is a 5 days outbound programme where					
Empowerment - 3	students get exposed to problems faced by the society and explore					
Credits	ways to use digital technologies to find solutions. students are					
	expected to conduct research and present their findings through a					
	short dissertation at the end of the programme.					

University Electives

Holistic Developmet- HD1, HD2, and HD3 (500 level)

Course Code	Course Name	Credit	Year of Introduction				
M5220010,	Holistic Development	9	2024				
M5220011,							
M5220012							
Prerequisites:	Nil						
HD1 2 credits HD2 2 credits HD3 5 credits	Holistic development comprises of 3 modules; HD1, HD2, and HD3 in 1st semester, 2nd semester, and 3rd semester, respectively. Holistic Development will involve workshops/activities, bridge courses, re- search with proof of publication/conference presentation/proto- types/filed IP, completion of MOOCs with internal evaluation at 500 level and industry/research internships with an internal evaluation at 500 level or any other 500 level activity as permitted by the aca- demic committee. The list of activities permitted for HD1, HD2, and HD3 will be decided at the University level based on the proposals received from the schools/faculty members and as approved by the Academic committee and will be communicated through the Aca-						
	acquired through multiple activities from the list of permitted activi- ties.						

Core courses

Principles and Practices in Computer Science

Course CodeTitle of the courseCreditsLevelCredit SplLecture-LaLecture-LaProject

M4220151	Principles and Practices in Computer	4	400	3-0-1-0
	Science			

	Course Outcomes
C01	Analyze and differentiate computer system components and identify the relationships between hardware and software within a computing environment.
C02	Evaluate and categorize operating system functionalities and understand how these systems manage processes, memory, files, and user interactions
CO3	Demonstrate the ability to categorize and compare network protocols and devices and address schemes, forming connections between different layers of network architecture
CO4	Design and appraise the implementation of computer science concepts in real-world scenarios while recognizing and assessing their applications' ethical and societal implications

	Mapping of Course Outcomes with Programme Outcomes							
	PO1	PO2	PO3	PO4	PO5	P06		
C01	2	1	1	2	1	2		
C02	2	1	1	2	1	2		
CO3	2	1	1	2	1	2		
CO4	2	1	1	2	1	2		
Module	Contents							
I	Computer Systems and Architecture - Introduction to Computer Systems, Evolution of computing systems and key milestones, Essential components: CPU, RAM, and storage devices, Binary Representation and Data Storage, Basic CPU architecture - ALU, Registers, Control unit, Memory hierarchy: Registers, Cache, RAM, Virtual memory, File Systems, Output devices, Parallel Computing Architectures - SIMD, MIMD, GPU, and TPU							
2	Operating Sy Memory Ma Managemen scheduling	Operating Systems - Definition and functions, Types of OS, Processes and threads, Memory Management, Memory allocation techniques, File Systems, and Storage Management- File system structure and organization, File operations, Disk scheduling and storage optimization, User Interface - CLI and GUI, System						

	Utilities - Text editors, file browsers, terminal commands, User management, and
	security considerations
3	Computer Networks - Definition and importance, Types of networks, Network
	Protocols - OSI model, TCP/IP, HTTP, FTP, SMTP, etc., Data encapsulation and
	packet structure, Networking Devices: routers, switches, hubs, gateways, etc.,
	Topologies: star, bus, ring, mesh, hybrid, Network Addressing, and Subnetting -
	IP addressing: IPv4 vs. IPv6, Subnetting, DHCP, NAT/PAT, Network Security -
	Network security threats: malware, phishing, DoS, etc., Firewalls, VPNs, and
	secure communication protocols.
4	Client-Server Architecture: Understanding client-server interaction, Practical
	examples: web servers, email servers, game servers, Cloud Computing
	Fundamentals: Cloud deployment models: IaaS, PaaS, SaaS, Virtualization and
	cloud service providers, Emerging Trends in Computer Science: Quantum
	computing, Edge computing, and distributed systems, Ethical and Social
	Implications of Computing: Privacy concerns and data security, Algorithmic bias
	and digital divide, Internet of Things (IoT) - Applications and Challenges.
References	5
1	"Structured Computer Organization" by Andrew S. Tanenbaum
2	"Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, and Greg
3	. "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos
4	. "Computer Networking: A Top-Down Approach" by James F. Kurose and Keith W. Ross
5	. "Cloud Computing: Concepts, Technology and Architecture" by Thomas Erl, Ricardo Puttini, and Zaigham Mahmood

Database Systems

Course Code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar- Project
M4220152	Database Systems	4	400	3-1-0-0

C01	Summarize the basic concepts and applications of Database Management System.
	Design Entity - Relationship diagram and convert into the corresponding logical
CO2	schema.
	Write SQL queries based on the given requirements and get practical
CO3	knowledge on data modeling, data manipulation and data retrieval
	Summarize the architecture and features of distributed databases and get the
C04	knowledge on distributed databases and understanding on handling unstructured data

Mapping of course outcomes with programme outcomes							
	PO1	P02	P03	P04	PO5	P06	
C01	2	2	1	1	1	1	
CO2	2	2	3	1	1	2	
CO3	2	3	2	1	1	1	
CO4	2	3	2	1	1	2	

Module	Content
1	Introduction to Database Management Systems: Data, Information, Database, File
	Server Model, Client Server Model, Components of DBMS, DBMS Features,
	Transaction and ACID properties, Data Abstraction and data independence.
2	Data Modeling: Logical and Physical Data Models, E-R Modeling A detailed study,
	Record Based Models, Relational Model - overview, Relational Concepts, Tables,
	Keys, Constraints, Data Integrity and Constraints, Integrity Rules, Database Objects,
	Schema and Non-schema, Database Normalization, Codds Rules, Functional
	dependency.
3	Introduction to SQL: Introduction to SQL, SQL Features, SQL Operators, SQL
	Datatypes, SQL Parsing, Types of SQL Commands, Advanced Study of Structured
	Query Language, Querying Data from the database, Queries, Correlated Sub-
	queries, Joins, Hierarchical Queries, Bind Variables, Cursors, Views, Functions,
	Stored Procedures and Triggers.

4 Distributed Databases: Architectures for parallel databases, Parallel query evaluation; Parallelizing individual operations, Distributed database concepts, Data fragmentation, Replication, and allocation techniques for distributed database design; Query processing in distributed databases; Concurrency Control and Recovery in distributed databases. NoSQL- The Emergence and relevance of NoSQL, Types of NoSQL Databases, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, Challenges NoSQL approach, Key-Value store and Document Data Models, Column-Family Store and graph database.

Text Books:

- 1. Database Management System, MonelliAyyavaraiah, ArepalliGopi, Horizon Books, 2017
- 2. SQL and NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big Data Management, Andreas Meier, Michael Kaufmann, Springer, 2019
- 3. Abraham Silberschatz; Henry F Korth, Database System Concepts, McGraw Hill Publication, 2002
- 4. Hellerstein, Joseph, and Michael Stonebraker. Readings in Database Systems (The Red Book). 4th ed. MIT Press, 2005.
- 5. Raghu, and Johannes Gehrke. Database Management Systems. 3rd ed. McGraw- Hill, 2002.

References:

- 1. Stefano Ceri; Giuseppe Pelagatti, Distributed Databases: Principles and Systems, Universities Press, 2000.
- 2. Jan L Harrington, Object Oriented Database Design Clearly Explained, Harcourt, 2000.
- 3. Elmasri, Ramez; Navathe, Shamkant B, Fundamentals of Database Systems, Pearson, 2000.

Data Analytics and Visualization

Course code	Title of the course	Credits	Level	Credit Split
				Lecture-Lab- Seminar-Project
M4220153	Data Analytics and Visualization	4	400	2-1-0-1

	Course Outcomes					
C01	Understand the fundamentals of data science and its applications.					
C02	Effectively engineer features from raw data and apply various data reduction techniques to streamline data.					
C03	Use a diverse range of data visualization techniques to explore and communicate insights effectively.					
C04	Understand the design, implementation, and management of data warehouses					

and OLAP systems.	
-------------------	--

Mapping of course outcomes with program outcomes									
	PO1 PO2 PO3 PO4 PO5 PO6								
C01	3	1	3	1	0	0			
C02	3	3	3	1	1	0			
CO3	3	3	3	3	0	0			
CO4	3	2	3	1	0	0			

Module	Content
	Introduction to data science: data science and its applications, building models,
1	data science project life cycle. Data quality and data preparation: data exploration,
	data types. Data cleaning: problems with data and data cleaning methods. Data
	integration, redundancy and correlation analysis.
	Data Transformation and discretization: converting data types, normalizing and
	scaling numerical features, encoding categorical variables, creating derived
	features and aggregating data.
	Feature Engineering: selecting relevant features for analysis, creating new features
	that capture valuable information from the existing data, understanding domain
2	knowledge to engineer meaningful features. Data reduction: different types of
	reduction methods, wavelet transform, PCA, attribute subset selection, parametric
	data reduction, sampling techniques in data reduction, data cube aggregation. Data
	validation and sanity checks: verifying the integrity and accuracy of data using
	validation rules and logic checks. Cross-validating data against external sources or
	known benchmarks. Ethics in data. Data security. Sampling, data distributions,
	Monte carlo and MCMC simulations for data curation.
	Data visualization: theory of data visualization. Univariate visualizations: different
	types of data visualizations, color theory, choosing the right data visualizations.
3	Visual hierarchy, Associability and inclusivity, Interactive data visualizations.
	Multivariate visualizations: scatterplot, bubble chart, visualizing high dimensional
	data, exploratory data Analytics. Data storytelling.
	Introduction to Data Warehousing and Online Analytical Process: Data modeling,
	data extraction, transformation, and loading (ETL). Data warehouse design, data
4	warehouse administration, and data warehouse applications.

Text Books: Prakash, Kolla Bhanu, ed. *Data Science Handbook: A Practical Approach*. John Wiley and Sons, 2022. CareerFoundry. *What is Data Analytics? A Complete Guide for Beginners*. CareerFoundry, 2023. Taniar, David, and Wenny Rahayu. *Data warehousing and analytics: fueling the data engine*. Springer Nature, 2022. References:

1. McKinney, Wes. *Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.* " O'Reilly Media, Inc.", 2012.

Scientific Computing and Computational Techniques

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project	
M4220154	Scientific Computing and Computational Techniques	4	400	3-1-0-0	

Course Outcomes					
C01	Introduction to scientific computing, Error in computing, Scientific models				
	Solutions of equations with one variable, Systems of equations				
CO2					
	Eigenvalue problems				
CO3					
	Curve fitting and approximations				
C04					

Mapping of course outcomes with programme outcomes							
	P01	PO2	P03	PO4	P05	PO6	
C01	2	3	3	0	0	0	
C02	3	2	2	0	0	0	
CO3	3	2	2	0	0	0	
CO4	3	2	2	0	0	0	

Module	Content
	Introduction to scientific computing, its applications. Number System and Errors
1	Representation on integers and floating point numbers, Errors in computation, loss of
	significance. Scientific models for computation, Developing insights, Computational
	complexity
	Solutions of Equations in one variable: Bisection Method, Newton Raphson Method,
2	Secant method, Brent's method, Error Analysis, Accelerating Convergence,
	Polynomial Evaluation - Horner's rule, Zeros of polynomials and Muller's Method,
	Systems of Linear Equations: Gaussian Elimination, Triangular decomposition, LU
	decomposition, Cholesky decomposition, Pivoting strategies, Error analysis and
	Operations count, Ill-conditioning and condition number of system, Jacobi, Gauss-
	Seidel, Conjugate Gradient
	Evaluation of determinants, Eigenvalue Computations: Diagonalization of the system
3	of ODE, Power Method, Given's and Householder's methods for Tridiagonalization,
	Lanczos Method, QR Factorization
	Curve fitting and Approximation : Lagrange's interpolation, Newton interpolation,
4	Polynomial wiggle problem, Polynomial extrapolation, Spline interpolation, Least
	Square Method – line and other curves, Orthogonal Polynomials, Tchebyshev
	interpolation, Fourier approximation and Fast Fourier Transforms (FFT) algorithm.
Referen	ces:

- 1. Numerical Methods in Engineering with Python, Jaan Kiusalaas, Cambridge University Press, 2010.
- 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical methods for scientific and Engineering computation, New Age International Publishers, 2007, 5th edition.
- 3. R.L. Burden, J. D. Faires, Numerical Analysis, Richard Stratton, 2011, 9th edition.
- 4. S.D. Conte and Carl de Boor, 'Elementary Numerical Analysis; An Algorithmic Approach'. International series in Pune and Applied Mathematics, McGraw Hill Book Co., 1980.
- 5. S. S. Sastry, Introductory methods of Numerical Analysis, 2012, PHI Publishers, 5th edition

Molecular Biology

Course Code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
----------------	---------------------	---------	-------	---

M4220155	Molecular Biology	4	400	3-0-1-0

Course Outcomes				
C01	Understanding nucleic acids and their functions			
CO2	Exploring protein structure and function			
CO3	Molecular processes and flow of genetic information			
CO4	Importance of enzymes and their functions			

Mapping o	Mapping of course outcomes with programme outcomes						
	P01	P02	PO3	P04	PO5	P06	
C01	3	2	1	0	0	0	
CO2	3	2	2	0	0	0	
CO3	3	2	2	0	0	0	
CO4	3	2	2	2	0	0	

Module	Content						
1	Importance of molecular biology, introduction to the central dogma of life.						
	Nucleic acids: Nucleic acid as the genetic material, structure and functions of						
	nucleic acids, nucleosides and nucleotides, purines and pyrimidines,						
	biologically important nucleotides, Watson and Crick model of DNA, struct						
	and types of RNA.						
2	Amino acids: Amino acids are the building blocks of proteins, structure of						
	standard amino acids, classification of amino acids, essential amino acids,						
	zwitterions, physical and chemical properties.						
	Proteins: Classification of proteins based on composition and solubility,						
	nutritive value, conformation and function, structural organization of						
	proteins- primary, secondary, tertiary and quaternary structures, forces						
	stabilizing protein structure and shape, structure of peptide bond,						
	denaturation of proteins, Ramachandran Plot.						
3	Central dogma of molecular biology						
	DNA replication: semi-conservative model, different enzymes and their						
	functions in replication, types of DNA damage and repair mechanisms.						

	Transcription: 3 stages-initiation, elongation and termination, sense and						
	antisense strands, promoter, post-transcriptional modifications, introns and						
	exons, splicing, reverse transcription.						
	Translation: 3 stages-initiation, elongation and termination, ribosome-E, P, A						
	sites, codons and anti-codons, stop codons, gene and genetic code.						
	Mutations: Point mutations-transitions and transversions; silent, missense,						
	nonsense mutations; Frame shift mutations.						
4	Enzymes: Nomenclature, classification and characteristics of enzymes,						
	holoenzyme, apoenzyme, cofactors, coenzyme, prosthetic groups, enzyme						
	catalysis- activation energy and transition state, enzyme activity and						
	specificity, factors affecting enzyme activity, active site, Enzyme kinetics-						
	concept of ES complex, Michaelis-Menten Equation.						
	Enzyme inhibition: reversible – competitive, non-competitive and un-						
	competitive inhibitions, irreversible inhibition.						
References:							
Eur domontolo of l	Rischemister Life at the Melecular Level Denald Vest Indit C. Vest Charlette W. Drott						

Fundamentals of Biochemistry-Life at the Molecular Level, Donald Voet, Judit G Voet, Charlotte W Pratt, Wiley, ISBN 978-1-118-91840-1.

Biochemistry, U Satyanarayana, U Chakrapani, Elsevier, ISBN 978-81-312-3601-7.

Bioinformatics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220156	Bioinformatics	4	400	2-1-1-0

Course	Course Outcomes			
C01	Foundations of bioinformatics			
CO2	Bioinformatics databases			
CO3	Basics of genomic sequencing and analysis			
CO4	Sequence alignment methods			

Mapping of course outcomes with programme outcomes

	P01	P02	P03	P04	P05	P06
C01	3	2	1	0	0	0
C02	3	2	2	0	0	0
CO3	3	2	2	1	1	1
CO4	2	2	2	1	1	1

Module	Content
1	Introduction to Bioinformatics, cell as the basic unit of life, gene, genome, genetic
1	code Omics-genomics proteomics pharmacogenomics phenomics metabolomics
	transcriptomics interactomics, anigenomics; applications of bioinformatics
	Human Conomo Project: an overview of the project goals and major scientific
	strategies of UCD superted acientific and medical hangits of the project.
2	Strategies of HGP, expected scientific and medical benefits of the project.
2	Bioinformatics databases: Categories of databases- sequence databases, structure
	databases, genome databases, proteomic databases, chemical databases, enzyme
	databases, expression databases, pathway databases, disease databases, primary
	databases and secondary databases.
	Nucleotide sequence databases-GenBank, EMBL, DDBJ, Protein databases-UniProt,
	Swiss-Prot, Genome Databases- NCBI, EBI; Protein-Protein interaction databases-
	STRING, Structure databases- Protein Data bank (PDB), Nucleic Acid Data Bank
	(NDB), Molecular modelling Data Bank (MMDB), PubChem, ChEMBL, ZINC, Gene
	expression databases- GEO, SRA.
3	Genomics: Genome Mapping, DNA Sequencing methods, basic concepts of similarity
	searching and sequence alignments, genomic data and data organization, DNA
	sequence analysis, identity and homology, local and global alignment, Smith
	Waterman and Needleman-Wunsch algorithms, scoring matrices- PAM and BLOSUM
	matrices, gap penalty.
4	Pairwise sequence alignments, Multiple sequence alignments, BLAST (Basic Local
	Alignment Search Tool), Nucleotide BLAST, Protein BLAST, PSI-BLAST, PHI-BLAST,
	word/k-tuple method, analysis of BLAST results, E Value, sensitivity and specificity
	of BLAST, FASTA sequence similarity search, ClustalW
Reference	es:
Bioinform Education	atics-Databases, tools and algorithms, Orpita Bosu, Simminder Kaur Thukral,OXFORD Higher
Bioinform	atics for Beginners-Genes, genomes, molecular evolution, databases and analytical tools,

Bioinformatics for Beginners-Genes, genomes, molecular ev Supratim Choudhuri, Elsevier, ISBN: 9780124104716.

Geographic Information System (GIS)

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220157	Geographic Information System (GIS)	4	400	3-1-0-0

Course	Outcomes
C01	Understanding the relevance of spatial cognition/information and spatial processes
CO2	Have a basic understanding of the nature of spatial data
CO3	Introducing spatial data editing and data management techniques
CO4	Integrating and applying the concepts of various spatial modelling techniques

Mapping of course outcomes with programme outcomes								
	P01	PO2	P03	PO4	P05	P06		
CO1	3	2	2	1	1	1		
CO2	2	3	1	2	1	1		
CO3	3	3	2	1	1	2		
CO4	3	3	2	2	1	1		

Module	Content

1	Introduction to GIS: nature and scope of GIS, components of GIS, proprietary and
	open-source software, spatial data sources, spatial data types and formats.
	Applications of GIS.
2	Modelling real world: Geodesy - shape and size of the earth, ellipsoid, geoid, datum,
	projections, coordinate reference systems. Spatial data models - vector and raster
	data models, Spatial and attribute data modelling, projections and transformation.
3	Data creation and management: Input, editing and management of spatial data,
	encoding methods, conventional data storage methods, concepts of databases - Geo-
	database, RDBMS, comparison of various storage methods. Spatial and tabular query
4	Introduction to geoprocessing: Overlay analysis, proximity analysis, neighborhood
	analysis. Terrain analysis, spatial interpolation, surface analysis. Spatial data
	visualization.
Reference	es:

Kang-Tsung Chang, Introduction to Geographic Information Systems 9th edition,ISBN10:1259929647, 2019

Burrough P A, McDonnell Principles of Geographical Information Systems 3rd edition: Oxford University Press, 2016.

Remote Sensing and Earth Observation

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220158	Remote Sensing and Earth Observation	4	400	3-1-0-0

Course Oi	utcomes
C01	Understand Various techniques and types of Remote sensing for earth observation
C02	Gain knowledge of various Remote sensing techniques
C03	Apply knowledge acquired in real-world contexts

CO4	Discuss the modern relevance of UAV Remote sensing
LU4	Discuss the modern relevance of UAV Remote sensing

Mapping of course outcomes with programme outcomes							
	P01	PO2	P03	PO4	PO5	PO6	
C01	2	2	1	1	1	1	
CO2	2	1	1	1	1	1	
CO3	3	2	2	2	1	1	
CO4	3	1	1	1	2	1	

Module	Content
1	Introduction to Remote Sensing – Remote sensing process – Physics of Remote
	Sensing: Electro Magnetic Radiation, EMR Theory – Energy sources and Radiation
	principles - Energy interaction in the atmosphere: Scattering, Absorption -
	Atmospheric windows – Energy interaction with earth surface features: Spectral
	reflectance of earth surface feature types - Spectral reflectance patterns for
	different regions of EMR - Spectral response patterns - Atmospheric and
	Geometric influence on spectral response patterns
2	Earth observation systems – Platforms – Orbits – Sensors – Concept of Resolution:
	Spatial, Spectral, Radiometric and Temporal – Multispectral Scanning –
	Characteristic of Earth Observation satellites: IRS, Landsat, Sentinel – Elements of
	Visual Image Interpretation – Visual Data interpretation keys
3	Types of Remote Sensing System: Based on Energy sources and Range of EMS –
	Characteristics of Optical, Thermal and Microwave and Hyperspectral Remote
	Sensing
4	Introduction to UAV: UAV Remote Sensing - Payload and Onboard Sensors -
	Mission Planning – UAV Image Processing - Orthophoto, DSM/ DEM and 3D Point
	Cloud Generation - UAV Applications; Introduction to GEE: Platform – Code editor
	– Datasets and case studies

Text Books:

- 1. Lillesand, T., Kiefer, R. W., and Chipman, J. (2015). Remote sensing and image interpretation. John Wiley and Sons.
- 2. Campbell, J. B., and Wynne, R. H. (2011). Introduction to remote sensing. Guilford Press.
- 3. Thenkabail, P. S. (2016). Remote Sensing Handbook; Volume 1: Remotely Sensed Data Characterization, Classification, and Accuracies. Taylor and Francis. Girard, C. (2018). Processing of remote sensing data. Routledge.

References:

- 1. Borengasser, M., Hungate, W. S., and Watkins, R. (2007). Hyperspectral remote sensing: principles and applications. CRC press.
- 2. Chang, C. I. (Ed.). (2007). Hyperspectral data exploitation: theory and applications. John Wiley and Sons.
- 3. 4Kuenzer, C., andDech, S. (2013). Thermal infrared remote sensing. Remote Sensing and Digital Image Processing. doi, 10(1007), 978-94.
- 4. Woodhouse, I. H. (2017). Introduction to microwave remote sensing. CRC press

Predictive Analytics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5220251	Predictive Analytics	3	500	1-1-0-1

Course Outcomes				
C01	Develop advanced analytical skills by applying complex predictive models.			
C02	Critically evaluate and select appropriate predictive analytics models.			
CO3	Design and implement comprehensive machine learning workflows.			
CO4	Develop reinforcement learning applications.			

Mapping of course outcomes with programme outcomes						
	P01	PO2	P03	PO4	PO5	P06
C01	3	2	3	2	3	1

C02	3	3	3	2	3	1
C03	3	3	3	2	3	2
C04	3	2	3	1	3	1

Module	Content
1	Types of analytics and their applications in industry. Advanced Predictive Analytics
	techniques and their Mathematical approach. Case study of supervised,
	unsupervised, semi-supervised, and reinforcement learning. Model Evaluation and
	Selection: Metrics (accuracy, precision, recall, F1-score, confusion matrix) and
	Techniques (cross-validation, ROC curves, AUC, model interpretability).
2	Supervised Machine Learning Hands-On Projects: Apply complex supervised
	machine learning models (e.g., Linear Regression, Logistic Regression, Ensemble
	Methods, and Support Vector Machines (SVM)) to solve real-world problems in
	diverse fields such as finance, healthcare, and e-commerce. Select appropriate
	model based on rigorous performance metrics and interpretability, understanding
	trade-offs in model complexity, accuracy, and generalizability.
3	Applications of Unsupervised Learning: Clustering, Hierarchical clustering, k-
	means clustering, Birch clustering, Measuring cluster goodness, Association rules,
	Affinity and Market Basket analysis. Clustering customer segments in an e-
	commerce dataset.
4	Advanced Techniques in Reinforcement Learning: Markov decision processes, Q-
	learning, Policy gradients. Applications of reinforcement learning in finance,
	recommendation systems, and real-time decision-making.
Text Bo	oks :
1. Alpayo	lin, Ethem. Introduction to machine learning. MIT press, 2020.
2. Géron	, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly
Media, Ir	nc.", 2022.
3. Bishop	o, Christopher M. Pattern recognition and machine learning by Christopher M. Bishop. Springer
Science+	Business Media, LLC, 2006.
4. Molnar	, Christoph. Interpretable machine learning. Lulu. com, 2020

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project	
M4220252	Web Technology	3	400	2-1-0-0	

	Course Outcomes
	Summarize transmission protocols and web server architecture
C01	
CO2	Utilize CSS to display HTML elements in Webpage
	Develop web pages using java script
CO3	
CO4	Summarize various design patterns used in software development

M	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	P01	PO2	P03	PO4	P05	P06
C01	1	1	3	3	1	3
CO2	2	1	3	2	1	2
CO3	2	1	3	3	1	2
CO4	1	1	2	3	2	3

Module	Content
1	Design, HTML5 Elements, Attributes and elements, Type of Style sheets: Internal
	Style sheet, Inline Style sheet, External Style Sheet, CSS3 Elements and features,
	CSS frameworks, Content delivery network, Selectors, XML Schema, Presenting
	XML Using XML Processors: DOM and SAX
2	Introduction to Java Script, Object in JavaScript, Dynamic HTML with Java Script,
	JavaScript Object Notation, Data types, Arrays, Decisions and Loops, Functions
	and scope, JavaScript libraries, JavaScript Frameworks, ECMAScript, TypeScript,

	Single page applications (SPA), Basics of React Web Framework. Introduction to
	MERN.
3	Creational Design Patterns, Factory Pattern, Abstract Factory Pattern, Prototype
	pattern, Singleton Pattern, Builder Pattern, Dependency Injection pattern, The
	Web Services based on technologies such as SOAP, REST, WSDL, Django
	Framework: Architecture, MTV Architecture Pattern in Django Structure.
4	Data Access with Django and Python, CRUD Operations with DJango, Models,
	Templates, Controllers, Sample Django MTV Web Application, REST API with
	Django - Advanced, Cache and Sessions with Django, Data Visualization
	Techniques for small and large data, Fundamentals of web application
	architecture (1Tier, 2-Tier, 3-Tier, N Tier and MVC) and components, User
	interface app components, Structural components, Microservices, Monolithic vs.
	Microservices.
Reference	ces :
1.]	Jeffrey C. Jackson, Web Technologies - A Computer Science Perspective, Pearson Education)09.

- 2. Joseph B. Mille, Internet Technologies and Information Services, ABC-CLIO 2014.
- 3. William S Vincent, Django for Professionals: Production websites with Python andDjango Paperback, Import 2019.

Numerical Methods

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220253	Numerical Methods	3	400	1-1-0-1

Course Oi	utcomes
C01	Apply advanced numerical techniques to compute derivatives and integrals of functions, critically analyzing their accuracy and establishing rigorous error bounds.
CO2	Formulate and implement numerical schemes to solve ordinary and partial differential equations, comparing and validating different approaches for efficiency and stability.
CO3	Design and evaluate numerical methods for solving complex partial differential equations, including real-world applications involving physical and engineering systems.

	Integrate	numerical	technique	s for	linear	and	nonli	near	regression	and
CO4	optimizati	on, utilizing	machine	learnir	ig appr	oaches	to s	olve	high-dimens	ional
	problems	effectively.								

Mapping of cour	rse outcome	es with prog	ramme outo	comes		
	P01	PO2	P03	PO4	PO5	P06
CO1	3	3	3	0	0	0
CO2	3	3	3	0	0	2
CO3	3	3	3	2	0	2
CO4	3	2	3	0	2	2

Module	Content
1	Numerical differentiation, forward finite difference, backward finite difference,
	central difference methods, Numerical Integration,Trapezoidal rule, Simpson's
	rule, Composite numerical integration, Gaussian quadrature
2	Classification of ODEs (Linear, Non-linear, Exact), Geometric meaning of $y' = f(x, y)$
	y), Direction Fields, Numerical methods for solving ODEs, Euler's Method, Runge-
	Kutta methods, Multistep methods (e.g., Adams-Bashforth, Adams-Moulton),
	Implicit methods (e.g., backward Euler, implicit trapezoidal), Boundary Value
	Problems, Shooting method, Finite difference methods, Solving application
	oriented problems
3	Numerical Solutions to PDE, Finite difference methods, Laplace equation, Heat
	equation, Finite element methods, Finite volume methods, Spectral methods
4	Regression linear regression multiple regression Numerical optimization
1	antimization of single and multivariable functions gradient descent methods
	Artificial Neural Network Deveentmen East Conversed Neural Network
	Artificial Neural Network, Perceptron, Feed Forward Neural Network
Doforor	
Referen	
	 Numerical Methods in Engineering with Python, Jaan Kiusalaas, Cambridge UniversityPress, 2010. 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain,

2.	Numerical methods for scientific and Engineering computation, New Age InternationalPublishers, 2007, 5th edition,
3.	R.L. Burden, J. D. Faires, Numerical Analysis, Richard Stratton, 2011, 9th edition.
4.	S.D. Conte and Carl de Boor, 'Elementary Numerical Analysis; An Algorithmic Approach'. International series in Pune and Applied Mathematics, McGraw Hill Book Co., 1980.
5.	S. S. Sastry, Introductory methods of Numerical Analysis, 2012, PHI Publishers, 5th edition
6.	Willaim Boyce and Richard DiPrima, Elementary Differential Equations and BoundaryValue Problems, 11th Edition, Wiley-India
7.	Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

NGS and Genome Data Analysis

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4220254	NGS and Genome DataAnalysis	3	400	1-1-0-1

Course	Outcomes
C01	Analyze and interpret high-throughput sequencing data
C02	Apply Omics data analysis for genomic and epigenomic studies
CO3	Utilize bioinformatics tools for phylogenetic and variant analysis
CO4	Explore the role of omics in precision medicine

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	3	3	2	1	1	2
C02	3	3	2	1	2	2
C03	3	3	2	1	2	2

CO4	3	3	2	1	2	3

Module	Content
1	Sequencing technologies, NGS-different platforms and lllumina workflow, data
	formats-(BCL, fasta, fastq, SAM, BAM, BED, VCF, GFF), data analysis- quality check
	and preprocessing, FastQC output analysis, assembly and mapping, sequence
	assembly and algorithms, graph theory and de Bruijn graph, assembly quality.
2	Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO) databases,
	Genome-wide association study (GWAS) and whole-genome sequencing (DNA-seq),
	genetic variant detection and CNV, variant calling, gene prediction and annotation,
	RNA-seq, differential gene expression analysis, gene ontology, Mass-spec protein
	sequencing.
3	Epigenomics, DNA methylation, bisulfite sequencing, TAB-seq, oxBS-seq, TF binding
	site-ChIP-seq, metabolomics: analysis workflow and its main analysis softwares-
	MetaboAnalyst, integrative analysis of omics data- concatenation based,
	transformation based and model-based integration, machine learning for predictive
	modelling and analysis of omics data.
4	Precision medicine- gene therapy and gene editing technology, CRISPR technology,
	importance of pharmacogenomics in precision medicine.
	Phylogenetic analysis: Basics of phylogeny, gene phylogeny versus species
	phylogeny, phylogenetic tree of life, phylogenetic tree construction methods:
	distance-based methods, character-based methods, phylogenetic analysis tools-
	PHYLIP, ClustalW.
Referen	ces:
1	Bioinformatics-Databases, tools and algorithms, Orpita Bosu, Simminder Kaur Thukral, OXFORD Higher Education, ISBN0-19-567683-1
2	Next Generation Sequencing and Data Analysis 2021, Melanie Kappelmann-Fenzl, Springer, ISBN: 978-3-030-62489-7
3	Data Analysis and Visualization in Genomics and Proteomics, Francisco Azuaje, Joaquin Dopazo, Wiley, ISBN: 978-0-470-09439-6

Advanced Geospatial Analytics

Γ

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
------------	---------------------	---------	-------	---

	Course Outcomes
C01	Understand the manipulation of vector and raster data for geospatial modeling and
	analysis
CO2	Gain the knowledge and concepts and developing the skills in network analysis
CO3	Understand the concepts of spatio-temporal data and its analysis
CO4	Gain the knowledge about geo-computation methods and modelling

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	2	2	1	1	1	1
CO2	2	1	1	1	1	1
CO3	3	2	2	2	1	1
CO4	3	1	1	1	2	1

Module	Content
1	Advanced manipulation of vector and raster data. Spatial joins, aggregations and
	advanced filtering techniques.
2	Network modelling and analysis, Types of networks, Network data set and model
	construction, Network Analysis operations – Optimal Route and Optimal Tours,
	Location and Service Area Problems, Algorithms related to Network Analysis,
	Applications in Network Analysis
3	Working with spatio-temporal data, spatio-temporal data types, managing
	temporal data, visualizing and analyzing spatio-temporal data, spatio-temporal
	data estimation techniques
4	Geo-computation methods and modelling, Geo- simulation, Geospatial
	Applications of generic algorithms, Artificial Neural Networks, Agent Based
	Modelling, Cellular Automat
Text Boo	bks:
1.	Heywood L, Comelius S and S Carver, An Introduction to Geographical Information

Systems, Dorling Kindersley (India) Pvt Ltd, 2006

2. Micheal j de Smith, Micheal F Goodchild, Paul A Longley, Geospatial Analysis 5th edition, Troubadour Publishing Ltd, 2015

References:

- 1. 1Tsung Chang Kang, Introduction to Geographic Information Systems, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2002
- 2. Mitchell A, The ESRI Guide to GIS Analysis Volume 1: Geographical Patterns and Relationships, Environmental System Research Institute, Inc., Red Lands, California, USA

Courses offered as electives

Python Programming for Data Analytics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221151	Python Programming for Data Analytics	3	400	2-1-0-0

Course Outcomes						
C01	Apply data encoding and computational problem solving skills					
	Practice algorithm implementation to solve computational problems involving					
CO2	control structures and built-in data structures.					
	Obtain modularization, basic object oriented programming and basic graphical					
CO3	programming skills					
	Develop file processing, and exception handling skills					
CO4						

Mapping of course outcomes with programme outcomes							
	P01	PO2	PO3	P04	PO5	P06	
C01	2	3	3	0	0	0	
C02	3	2	2	0	0	0	
CO3	3	2	2	0	0	0	

CO4						
	3	2	2	0	0	0

Module	Content								
1	Basics: Information and Data Analog and Digital systems Bits Bytes and Bit								
-	natterns Numeral Systems Data Encoding Computational problem solving.								
	Problem analysis Program design Program implementation Program testing								
	Algorithms and flowcharts Overview of programming languages Python:								
	Introduction. Installing and running Python programs								
2	Data and expressions: Comment statements, Literals, Variables and identifiers,								
	Keywords, Operators, Expressions and Data Types, Operator precedence and								
	associativity, Type conversion. Environment variables, Formatting numbers, the								
	format method. Control structures: Boolean expressions, One and multi-way								
	selection, Iterative control, Nested loops, Indentation, break and continue								
	statements.								
3	Functions: Defining and calling functions, Scope and lifetime, Local functions,								
	Returning single and multiple values, Parameter passing, Namespaces, Keyword								
	and default arguments, Optional parameters, Variable number of arguments,								
	Closures, Lambda functions, Function redefinition. Object-oriented programming								
	basics: Objects, abstraction, encapsulation, classes, theinit() method.								
4	String formatting and processing. Collections: Range function, Lists, Tuple, Sets and								
	Dictionaries - Creating, Accessing, Basic operations and Methods, Sorting and								
	Copying, Passing collections to a function, Mapping functions in a dictionary.								
	Modules: Modules, Packages, Standard Library modules. Iterators: Sequences,								
	iterables, iterator protocol. Generators: Generator functions and expressions.								
	Files: Types of files, Opening, Closing, Reading and Writing files. Exceptions:								
	Catching and handling exceptions, multiple exceptions. Graphics: Turtle Module,								
	Drawing with colors, Drawing basic shapes using iterations, Creating bar charts.								
Referen	ce books and articles								
[]	I] Charles Dierbach, "Introduction to Computer Science Using Python: A Computational								
P	roblem-Solving Focus", Wiley. 21 Ashok Namdey Kamthane, Amit Ashok Kamthane, "Programming and Problem Solving with								
P	ython", McGraw Hill Education.								
[3	8] Jake Vander Plas, "Python Data Science Handbook – Essential Tools for Working with Data",								
	Kenny Media, Inc. 1] Zhang.Y., "An Introduction to Python and Computer Programming". Springer Publications.								
[!	[5] Wes McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and								
Iţ	oython" O'Reilly Media.								

[6] Haslwanter, T., "An Introduction to Statistics with Python", Springer.

Differential Equations

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221152	Differential Equations	3	400	1-1-1-0

Course Outcomes						
C01	Employ numerical techniques to compute derivatives and integrals of functions, evaluating their accuracy and error bounds					
CO2	Understand the fundamental concepts and classifications of differential equations.					
CO3	Apply various analytical and numerical methods to solve ordinary and partial differential equations.					
CO4	Analyze and interpret solutions of differential equations in the context of real-world problems.					

Mapping of course outcomes with programme outcomes							
	P01	PO2	P03	PO4	P05	P06	
C01	3	1	0	2	0	0	
CO2	2	1	0	2	0	0	
CO3	3	3	2	2	1	0	
C04	3	3	2	2	3	0	

Module	Content
1	Some basic differential equation models and Classification of ODEs (Linear, Non-
	linear, Exact, Separable, Geometric meaning of $y' = f(x, y)$, Direction Fields,
	Numerical methods for solving ODEs, More accurate methods for Initial Value
	Problems. Theory and Error analysis for Initial Value Problems. Adaptive, multistep,
	and other numerical methods for IVPs
2	Systems of First Order Differential Equations. Notations and relations.
	Two-dimensional First Order Systems. Phase-plane analysis for First-Order
	systems. General First-Order systems and higher-order differential equations.
3	Homogeneous Linear ODEs, Modelling of Free Oscillations of a Mass-Spring
	System, Euler-Cauchy Equations, Non-homogeneous ODEs, Variation of
	Parameters, Modelling (Forced
	Oscillations, Electric Circuits) Modelling Engineering problems (Electric Network,
	Mixing problem in two tanks etc.) as systems of ODEs, Wronskian, Phase-Plane
	Method, Critical Points and Stability
4	Introduction to Partial Differential Equations. Some concepts of PDEs. Finite
	Difference Methods for Elliptic Equations. General boundary conditions for elliptic
	problems and block matrix formulations. Concepts of Hyperbolic PDEs. Finite
	difference methods for hyperbolic PDEs. Finite difference methods for Parabolic
	PDEs
Textboo	ks

1. C. Kumar, B. Kaur, G. Manchanda, A Textbook on Differential Equations and Applications, Sultan Chand and Sons, 2023

2. M.D. Raisinghania, Advanced Differential Equations, Sultan Chand and Sons, 1995

3. J. Sundnes, Solving Ordinary Differential Equations in Python, 2023

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221153	Time series analysis and SEM Modeling	3	400	1-1-0-1

Time Series Analysis and SEM Modeling

	Course Outcomes				
C01	Introduction to time series				
CO2	ARIMA model discussion				
CO3	State-space model				
CO4	Structural Equation Models				

M	Mapping of course outcomes with programme outcomes					
	P01	P02	P03	P04	P05	PO6
C01	3	2	2	2	2	1
CO2	2	3	1	2	1	1
CO3	2	2	1	1	1	1
CO4	3	3	2	2	2	1

Module	Content
	Characteristics of Time Series, The Nature of Time Series Data, Time Series Statistical
1	Models, Measures of Dependence: Autocorrelation and Cross-Correlation, Stationary
	Time Series, Estimation of Correlation
	ARIMA Models, Introduction, Auto regressive Moving Average Models, Auto
2	correlation and Partial Autocorrelation Functions , Forecasting , Estimation , Building
	ARIMA Models, Multiplicative Seasonal ARIMA Models
	State-Space Model, Introduction, Filtering, Smoothing, and Forecasting, Maximum
3	Likelihood Estimation, Structural Models: Signal Extraction and Forecasting, ARMAX
	Models in State-Space Form
	Structural equation models: The basics, Latent versus observed variables, Exogenous
4	versus endogenous latent variables, The factor analytic model, The general structural
	equation model, The formulation of covariance and meanstructures

References:

- 1. Robert H. Shumway, David S. Stoffer, Time Series Analysis and Its Applications With R Examples, Springer, 2014
- 2. Subba Rao, Calyampudi Radhakrishna Rao, Time Series Analysis: Methods and Applications, Elsevier, 2012

Computational Neuroscience

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221251	Computational Neuroscience	3	400	2-1-0-0

	Course Outcomes			
CO1	Analyze the biological and electrical behaviour of neurons			
001	r maryze the biological and creethour benaviour of neurons.			
CO2	Evaluate the applicability of advanced computational techniques to create models			
	of biological neurons.			
CO3	Evaluate the applicability of Kirchoffs's laws, cable theory and numerical methods			
	in neuroscience.			
CO4	Evaluate mathematical problems related to neuroscience.			

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	3	2	1	0	0	0
CO2	2	1	3	0	0	0
CO3	2	3	2	0	0	0
CO4	1	2	3	0	0	0

1	Basic neuroscience: The nervous system, central and peripheral nervous system.				
	organization of the brain brain anatomy and function neurons dendrites and				
	evens electrical and shamical superses, superstin and action potentials. Normat				
	axons, electrical and chemical synapses, synaptic and action potentials. Nerrist				
	Potential, GHK equation, Electrochemical Driving Force (EDF), Ohm's law,				
	Electrical EquivalentCircuit of a neuronal membrane.				
2	The Hodgkin-Huxley theory of action potentials: Voltage Clamp Experiments,				
	activation and non-inactivation parameters (n, m, h), estimation of n, m, h., action				
	potential generation and propagation, HHsim - simulation experiments.				
3	Introduction to computational neuroscience: Modelling and understanding, the				
	modelling perspective, formulating a conceptual model, Numerical methods for				
	neural modelling. Compartmental modelling, Kirchoff's current and voltage laws,				
	Thecable theory. Time constant and space constant.				
4	The NEURON simulation environment: Introduction, representing neurons with a				
	digital computer, model implementation, signal sources and monitors, running				
	simulation experiments, analysing results. Simple single cell and network model				
	Simple exercises using the NEURON module in Python.				
Referenc	es:				
1.	Malmivuo, J., and Plonsey, R. Bioelectromagnetism: principles and applications of				
bio	pelectric andbiomagnetic fields. Oxford University Press, USA.				
2.	Kandel, E.R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., Hudspeth, A. J. Principles				
of	Neural Science, McGraw Hill.				
3.	Neuroscience. Edited by Dale Purves, George J. Augustine, David Fitzpatrick, William				
C.	Hall,Anthony-Samuel LaMantia, and Leonard E. White. Sinauer Associates Inc.				
4.	Gazzaniga, M., Ivry, R. B., andMangun, G. R. Cognitive neuroscience: the biology of				
th	e mind.Cambridge: MIT press.				

Ethics in Data

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221252	Ethics in Data	3	400	1-0-2-0

	Course Outcomes	

C01	Understand the historical evolution and ethical considerations of data-driven
	decision-making.
CO2	Apply ethical principles to assess and mitigate bias in data collection and analysis.
CO3	Analyze the societal implications of data-driven technologies and their ethical
	consequences.
CO4	Evaluate and design ethical data policies and practices for responsible data usage.

Mapping of course outcomes with programme outcomes							
	P01	PO2	PO3	P04	PO5	P06	
C01	3	3	2	1	2	1	
CO2	3	3	3	2	2	1	
CO3	3	3	3	2	2	1	
CO4	3	2	3	2	2	1	

Madula	Combont
Module	Content
1	Introduction to Data Ethics - Data ethics: Definition and scope, Overview of
	computer components and their roles, Historical context, Evolution of data ethics,
	Ethical considerations in data-driven decision-making: utilitarianism, deontological
	ethics, etc., Case studies on ethical challenges in data usage: Cambridge Analytica
	scandal, Target's pregnancy prediction, etc.
2	Ethical Considerations in Data Collection and Analysis - Privacy rights and data
	protection regulations: General Data Protection Regulation - (GDPR), California
	Consumer Privacy Act (CCPA), Digital Personal Data Protection Bill (DPDPB - India),
	Ethical data collection: Role of informed consent, Bias and fairness in data analysis:
	algorithmic bias, fairness-aware machine learning, Transparency and
	accountability in algorithmic decision-making: Explainable AI, Algorithm auditing,
	Real-world examples of ethical dilemmas in data collection and analysis: facial
	recognition technology, predictive policing, etc.
3	Social and Cultural Impacts of Data Use - Data-driven discrimination and social
	inequality, Algorithmic bias and its impact on marginalized communities, Ethical
	considerations in AI and machine learning applications, Digital surveillance and its
	effectson civil liberties, The role of data ethics in shaping public policy - data
	protectionregulations, ethical AI guidelines by governments.

4	Building Ethical Data Practices - Ethical frameworks for data use and decision-							
	making, Establishing data governance and responsible AI practices - Data Ethics							
	Committees, AI Ethics Guidelines, Privacy Impact Assessments - PIAs, data							
	anonymization techniques, Ethical considerations for data sharing and							
	collaboration, Case studies of organizations leading in ethical data practices -							
	Microsoft's AI Ethics principles, Google's Responsible AI practices							

References:

- 1. "Ethics of Big Data" by Kord Davis and Doug Patterson
- 2. "Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World"
- 3. "Ethics for Robots: How to Design Ethical Robots and AI" by Matthias Scheutz
- 4. "Responsible AI: A Global Policy Framework" by IFG Advisory Board and PaulaGoldman

Data Structures and Algorithms

CourseCode	Title of the course		Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221253	Data Structures	and	3	400	2-1-0-0
	Algorithms				

	Course Outcomes
C01	Analyze an algorithm and find its efficiency
CO2	Evaluate the applicability of the concepts of Stack, Queue and Linked List in problem solving
CO3	Evaluate the applicability of recursion for problem solving
CO4	Practice algorithm design and implementation to evaluate searching and sorting

Mapping of course outcomes with programme outcomes									
P01 P02 P03 P04 P05 P06									
C01	3	3	1	0	0	0			
CO2	3	2	3	0	0	0			
CO3	3	1	3	0	0	0			
CO4	3	2	3	0	0	0			

Module	Content
1	Introduction to ADT and Algorithms: Data types, Data structures, Abstract data
	types, Algorithms, Algorithm analysis, Best case, worst case and average case
	complexities, Big-O notation, Analysis of Python List and Dictionary operations.
	Introduction to complexity classes.
2	Stacks: Introduction to stack, the stack abstract data type, basic operations,
	implementing a stack in Python, algorithm analysis of Python implementations of
	stack, computational problems relating to stack, expression representation using
	prefix and postfix notations, Evaluation of expression using stack. Queues:
	Introduction to queues, the queue ADT, basic operations, Python implementation,
	computational problems related to queue. Linked List: The unordered list ADT,
	linked list, linked list operations, doubly linked list, Python implementation,
	applications.
3	Recursion: The laws of recursion, format of a recursive function, applications of
	recursion such as Fibonacci series, Towers of Hanoi. Searching: Sequential and
	binary search, hashing. Sorting: Selection, bubble, insertion, quick, merge, heap
	sorts.
4	Trees: Vocabulary, Definitions, Tree operations, Implementation of tree, Binary
	trees, Balanced binary tree, Complete binary tree, binary search tree, balanced
	binary search tree, tree traversals. Heap: Introduction to binary heap, max heap, min
	heap, representation.
Reference	
1.	Bradley N. Miller, David L. Ranum Problem Solving with Algorithms and Data Structures Using Python,Franklin, Beedle and Associates.
2.	T.H. Cormen, Introduction to algorithms, MIT Press.
3.	A.D Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Pearson education
1.	Asia. V Langsam M I Augenstein and A M Tenenhaum Data Structures using C Pearson.
т.	Education Asia.
5.	Adam Drozdek, Data Structures and Algorithms in Java, Published by Brooks/Cole

Computational Chemistry

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
------------	---------------------	---------	-------	---

M4221254	Computational Chemistry	3	400	1-1-0-1

	Course Outcomes
C01	Apply advanced quantum chemical methods, including QM/MM approaches, to model and analyze biomolecular systems.
CO2	Develop and simulate computational models of bio-materials using molecular dynamics to investigate their properties and interactions.
CO3	Simulate and interpret spectroscopic data of biological systems using computational techniques, correlating results with experimental findings.
CO4	Utilize machine learning and data science tools to build predictive models and analyze large computational datasets in bio-systems ethically.

Mapping of course outcomes with programme outcomes							
	P01	P02	P03	PO4	PO5	P06	
C01	3	3	3	2	2	1	
CO2	3	3	3	2	2	1	
CO3	3	3	3	2	2	1	
CO4	3	3	3	2	3	2	

Module	Content
1	Quantum Chemistry of Biomolecules
	Theory: Advanced quantum chemical methods (DFT, post-Hartree-Fock) for
	biomolecules. QM/MM (Quantum Mechanics/Molecular Mechanics) methods for
	large biological systems. Basis set selection. Introduction to enzymatic active sites
	and simplified reaction mechanisms. Overview of bio-catalysis with emphasis on
	conceptual understanding.
	Lab: Software Focus: ORCA, Psi4, NWChem for quantum simulations; NWChem for
	QM/MM methods. Activities: Familiarise with basic tasks such as optimization,
	conformational search, modeling active sites, biocatalytic reaction mechanisms
	using QM and QM/MM calculations.
2	Computational Modeling of Bio-materials

	Theory Simulation of his incrimed materials. Design and analysis of pontides					
	Theory: Simulation of bio-inspired materials. Design and analysis of peptides,					
	proteins, and nucleic acids. Modeling bio-interfaces and biomimetic materials.					
	Self-assembly and molecular recognition. Emphasis on computational modeling,					
	with optional collaboration with experimental methods for enhanced					
	understanding.					
	Lab: Software Focus: GROMACS and NAMD for molecular dynamics simulations.					
	Activities: Simulating molecular dynamics of peptides and proteins; modeling bio-					
	interfaces; analyzing properties for bio-sensors and bio-compatible devices.					
3	Computational Spectroscopy of Biological Systems					
	Theory: Simulation of spectroscopic properties (IR, Raman, NMR, EPR). Time-					
	dependent DFT for electronic excitations in bio-chromophores. Interpretation of					
	experimental data. Structure-function relationships in biomolecules.					
	Lab: Software Focus: ORCA for spectroscopic simulations. Activities: Simulating IR,					
	Raman, NMR, EPR spectra; time-dependent DFT calculations; correlating					
	computational results with experimental data.					
4	Data-Driven Computational Chemistry in Bio-Systems					
	Theory: Machine learning for predicting molecular properties, reaction outcomes,					
	and biological activities. Data mining techniques for analyzing chemical libraries,					
	protein sequences, and genomic data. Statistical modeling and regression					
	techniques for quantitative structure-property relationships (QSPR). Integration					
	of cheminformatics for drug discovery and material design.					
	Lab: Python programming using scikit-learn, TensorFlow, and DeepChem.					
	Developing ML models for property predictions and molecular design. Analyzing					
	and visualizing data from high-throughput screening and simulations. Automating					
	data preprocessing and molecular modeling tasks. Applying QSPR techniques to					
	predict properties of new compounds.					
Hands-	Objective: Address a complex computational chemistry problem related to					
On	biological systems.					
Project	Activities: Applying advanced computational methods to study a biomolecule or					
	bio-material. Analyzing results to gain insights into structure, properties, or					
	reactivity. Preparing a comprehensive report and presentation demonstrating					
	methodologies, findings, and their significance.					
References:						
1. Jense	en, F. (2017). Introduction to Computational Chemistry (3rd ed.). Wiley. ISBN: 978-					

 1118825990.
 Cramer, C. J. (2004). Essentials of Computational Chemistry: Theories and Models (2nd ed.). Wiley. ISBN: 978-0470091821.

- 3. Schlick, T. (2010). Molecular Modeling and Simulation: An Interdisciplinary Guide (2nd ed.). Springer. ISBN: 978-1441963505.
- 4. Young, D. C. (2001). Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. Wiley-Interscience. ISBN: 978-0471333685.
- 5. Leach, A. R. (2001). Molecular Modelling: Principles and Applications (2nd ed.). Prentice Hall. ISBN: 978-0582382107.
- 6. Tutorials and user manuals for ORCA, Psi4, GROMACS, and NAMD.

Deep Learning and MLOps

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221255	Deep learning and MLOps	3	400	1-1-0-1

	Course Outcomes				
CO1	Advanced Neural Network Design: Apply deep learning principles to design complex neural networks for specialized applications, emphasizing both feedforward and recurrent architectures.				
CO2	Evaluation of Architectures: Critically evaluate and optimize different architectures for tasks in computer vision, NLP, generative modeling, and reinforcement learning.				
CO3	MLOps Frameworks: Implement MLOps frameworks to manage large-scale deep learning model deployments, with a focus on reproducibility, scalability, and governance.				
CO4	Research and Innovation: Conduct independent research projects in deep learning applications, resulting in original work that contributes to the field.				

Mapping of course outcomes with programme outcomes						
	PO1	P02	PO3	PO4	P05	PO6
C01	3	3	3	1	1	2
CO2	2	3	3	1	1	2
CO3	2	3	3	1	1	3
CO4	2	3	3	1	1	3

Module	Content
1	Advanced Deep Learning Fundamentals:
	Topics: Neural network architectures (feedforward, convolutional, recurrent,
	and transformers), deep learning optimizers, and regularization techniques.
	Lab Component: Implement advanced networks and test with real-world
	datasets.
2	Deep Learning Architectures:
	Topics: CNNs, RNNs, GANs, autoencoders, and transformer architectures for
	specialized tasks in NLP and computer vision.
	Seminar/Project: Critical analysis of recent research papers in each architecture
	area, with student presentations.
3	Deep Learning Operations (DLOps):
	Topics: CI/CD in deep learning, model versioning, monitoring, automated ML
	(AutoML), and ethical considerations.
	Project Component: Implement a DLOps pipeline for a chosen application using
	tools like TensorFlow Extended (TFX) or MLflow.
4	Capstone Project:
	Students design and implement an end-to-end deep learning solution for a
	complex, real-world problem. This includes model selection, tuning,
	deployment, and evaluation, aiming for outcomes suitable for publication or
	conference presentation.
Assessme	ent:
• Ca	pstone Project (40%): Evaluation includes a written report, code submission, and
or	al presentation.
• Ex • Se	aminations (40%): Final assessments on theoretical and practical knowledge. minars/Research Review (10%): In-depth discussions and presentations on recent
re	search papers.
• La ar	b Work (10%): Demonstrate hands-on proficiency in implementing deep learning chitectures and DLOps practices.
D.C	
Keference	2 5:
	 Deep Learning with Python by François Chollet Python Deep Learning by Ivan Vasiley, Daniel Slater, and Gianmario Spacagna
	 Practical MLOps: Operationalizing Machine Learning Models" by Noah Gift and Alfredo Deza

Microwave Remote Sensing

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M4221256	Microwave remote sensing	3	400	1-1-0-1

Course Outcomes					
CO1	Understand Advanced Properties and Characteristics of Microwaves				
	Analyze and Interpret Synthetic Aperture Radar (SAR) Data				
CO2					
	Apply SAR Interferometry (InSAR) for Geospatial and Environmental Monitoring				
CO3					
	Implement SAR-Based Techniques for Environmental Applications				
CO4					

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	2	3	2	1	2	1
CO2	2	3	3	1	1	1
CO3	3	2	1	2	1	2
C04	2	3	3	2	3	1

Module	Content					
1	Advanced Properties and Characteristics of Microwaves					
	Properties of Microwaves					
	 Types of Microwave Sensors: Active & Passive 					
	Radar Cross section and Image Interpretation					
	Radar characteristics for Image Analysis					
	 Signal Polarization, Wavelength, and Penetration Depth 					
	Radar Brightness and its Applications.					
2	Synthetic Aperture Radar (SAR) and Image Correction Techniques					
	 Fundamentals of Radar Principle and Side-Looking Radar Systems 					
	Range and Azimuth Resolution					

	Synthetic Aperture Radar (SAR) Imaging
	Geometric Properties of SAR
	Radiometric Properties of SAR
3	SAR Interferometry and Time Series Analysis Techniques
	Principles of SAR Interferometry (InSAR)
	InSAR for Topographic Mapping and DEM Generation
	Differential SAR Interferometry for Deformation Monitoring
	• InSAR Time Series Analysis Techniques for Tracking Surface Deformation
	• Applications in Tracking Landslide Events and Urban Subsidence Monitor-
	ing
4	Advanced Applications of SAR in Environmental Monitoring
	SAR Inundation and Surface Water Mapping Techniques
	SAR for Agriculture Monitoring and Crop Health Assessment
	Forest Monitoring and Biomass Estimation Using SAR
C	• •

Course Project:

Each student will complete a project that leverages SAR and InSAR techniques for environmental monitoring. Students may choose one of the following topics:

•Flood Mapping and Surface Water Monitoring: Utilizing threshold-based techniques and SAR data for accurate flood extent mapping.

•Forest and Agriculture Monitoring: Analyzing Forest degradation or agricultural patterns over time using SAR data, with a focus on biomass estimation.

•Landslide Monitoring: Tracking landslide or subsidence events over time with InSAR time series data to assess stability and movement.

References:

- 1. Lillesand, T., Kiefer, R. W., &Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
- Iain H. Woodhouse (2006), Introduction to Microwave Remote Sensing, CRC Press.Chein I Chang, "Hyperspectral Imaging: Techniques for Spectral Detection and Classification", Kluwer Academic/Plenum Publishers, New York, N.Y., 2003. (ISBN: 0-306-47483-2).
- 3. Ulaby, F.T., Moore, K.R. and Fung, Microwave remote sensing vol-1, vol-2 and volAddison Wesley Publishing Company, London, 1986.
- 4. Floyd.M. Handerson and Anthony, J.Lewis "Principles and applications of Imaging RADAR", Manual of Remote sensing, Third edition, vol.2, ASPRS, Jhumurley and sons, Inc, 1998.
- 5. Philippe Lacomme, Jean clande Marchais, Jean-Philippe Hardarge and Eric Normant, Air and spaceborne radar systems An introduction, Elsevier publications 2001.
- 6. Roger J Sullivan, Knovel, Radar foundations for Imaging and Advanced Concepts, SciTech Pub, 2004.
- 7. Ian Faulconbridge, Radar Fundamentals, Published by Argos Press, 2002.
- 8. Eugene A.Sharkov,Passive Microwave Remote Sensing of the Earth: Physical Foundations, Published by Springer, 2003.

Course Code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar- Project
M4221257	Natural Language	3	400	1-1-0-1
	Processing and			
	Information Retrieval			

Natural Language Processing and Information Retrieval

	Course Outcomes
C01	Implement Core NLP Techniques: Use linguistic principles to perform
	essential NLP tasks like tokenization, POS tagging, and dependency
	parsing.
CO2	Apply Statistical NLP and Embeddings: Utilize machine learning techniques,
	including word embeddings, for effective text representation.
CO3	Construct Information Retrieval Models: Implement core IR models and
	evaluate them using precision, recall, and other metrics on benchmark
	datasets.
CO4	Develop Advanced IR Systems: Design and optimize custom retrieval systems
	with advanced algorithms, including query expansion and relevance
	feedback.

	Mapping of Course Outcomes with Programme Outcomes								
	P01	P02	P03	P04	P05	P06			
C01	3	3	3	1	1	1			
CO2	3	3	3	1	1	1			
CO3	3	3	3	1	1	3			
CO4	3	3	3	1	2	3			
Module	Contents								

1	Foundational Concepts in NLP and Linguistics:
	Topics: Introduction to basic linguistic principles including syntax,
	semantics, and phonology. Key NLP tasks including tokenization, stemming,
	part-of-speech (POS) tagging, named entity recognition (NER), and
	dependency parsing.
	Lab Component: Students will implement basic NLP preprocessing
	techniques on datasets using libraries such as NLTK and spaCy. Exercises
	will include building tokenization and tagging pipelines and performing
	dependency parsing on sample text.
2	Statistical and Machine Learning Approaches in NLP:
	Topics: Machine learning techniques for language processing including Bag
	of Words, Term Frequency-Inverse Document Frequency (TF-IDF), n-grams,
	language modeling, and vector space models. Exploration of word
	embedding techniques, such as Word2Vec, GloVe, and contextual
	embeddings.
	Lab Component: Experiment with embedding techniques to analyze their
	effectiveness in representing text data for downstream tasks. Students will
	test embeddings for sentiment analysis, document classification, and
	semantic similarity applications.
3	Information Retrieval Models:
	Topics: Core models in information retrieval, including probabilistic models
	(e.g., BM25), vector space models, semantic retrieval models, and neural IR
	models.
	Lab Component: Implement and evaluate retrieval models using precision,
	recall, F1-score, and Mean Average Precision (MAP) on benchmark datasets.
	Students will test these models on IR datasets to retrieve relevant
	documents and assess model effectiveness.
4	Advanced Information Retrieval Algorithms:
	Topics: In-depth exploration of retrieval algorithms, including inverted
	index optimization, relevance feedback, query expansion techniques, term
	weighting, and dimensionality reduction methods.
	Project Component: Develop a custom retrieval system incorporating term
	weighting, query expansion, and relevance feedback. This project should
	address a real-world IR problem, evaluating effectiveness through metrics
	and providing insights for improvements.

References

1. Speech and Language Processing by Daniel Jurafsky and James H. Martin

2. Natural Languag Processing with PyTorch by Delip Rao and Brian McMahan

3. Introduction to Information Retrieval by Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze

4. Research papers on recent advancements in neural IR and transformer-based models.

Advanced Topics in the Semantic Web and Social Network Analysis

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221251	Advanced Topics in the	3	500	2-1-0-1
	Semantic Web and			
	Social Network			
	Analysis			

	Course Outcomes
C01	Explain the fundamental concepts of the Semantic Web and its evolution in
	applications; analyze social network principles and evaluate Social Network Analysis
	(SNA) for global and personal network insights.
CO2	Apply ontology-based knowledge representation techniques and Semantic Web
	languages to model social network data; develop ontological models and employ
	reasoning techniques for meaningful insights.
CO3	Design and implement advanced ontological models for network-based data
	representation; integrate Semantic Web technologies with social networks to develop
	applications and evaluate their scalability and integration challenges.
CO4	Identify and analyze community structures in social networks using archived web
	data; apply community detection algorithms, utilize tools for dynamic community
	characterization, and synthesize multi-relational data to understand community
	dynamics.

Mapping of course outcomes with program outcomes							
	P01	P02	P03	PO4	PO5	P06	
C01	2	3	2	1	1	2	

CO2	2	2	2	2	1	2
CO3	3	2	2	2	1	2
CO4	2	1	1	2	2	3

Module	Content
	Foundations of the Semantic Web and Social Networks
1	•Overview of the Semantic Web and its relevance in modern data analysis.
	•Importance and technological adoption of the Semantic Web.
	•Introduction to Social Network Analysis: Key concepts, historical development, and
	global network structures.
	•Macro-structure of social networks, with a focus on analysing personal networks.
	Ontology and Knowledge Representation for Social Data
2	•Role of ontology in the Semantic Web; understanding ontology-based knowledge
	representation.
	•Semantic Web languages (RDF, OWL) and their applications in social network data
	modelling.
	•Ontological representation of social individuals and relationships.
	•Aggregation and reasoning over social network data for advanced knowledge
	inference.
	Advanced Social-Semantic Applications and Modelling Techniques
3	•Network-based data representation and ontological modeling for social individuals
	and relationships.
	•Techniques for aggregating and reasoning with social network data.
	•Building social-semantic applications: Integrating semantic web technology with
	social network features.
	•Developing semantic web applications with emphasis on scalability, data integration,
	and user engagement.
	Community Detection and Dynamics in Social Networks
4	•Community evolution and detection in archived web data.
	•Definitions, methods, and evaluation of community structures in social networks.
	•Techniques for mining community data and applications of community mining
	algorithms.
	•Tools for community detection, focusing on multi-relational and decentralized social
	networks.

 Multi-relational dynamics 	and	decentralized	frameworks	in	modern	online	social
network infrastructures.							

References:

- 1. Social Network Analysis for Startups, Maksim Tsvetovat, Alexander Kouznetsov, O'Reilly Media, 2011.
- 2. Understanding Social Networks: Theories, Concepts, and Findings, Charles Kadushin, Oxford University Press, 2011.
- 3. Social Networks and the Semantic Web. Peter Mika, Springer Science and Business Media, 2007
- 4. Social Network Analysis: A Handbook by John P. Scott, 2000, Sage Publications Ltd

Advanced Geospatial Programming

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221252	Advanced Geospatial	3	500	1-1-0-1
	Programming			

	Course Outcomes
C01	Demonstrate proficiency in core Python geospatial libraries for effective data visualization and analysis.
CO2	Execute advanced raster and vector data processing using tools like GDAL and Rasterio.
CO3	Utilize Google Earth Engine (GEE) with Python to conduct large-scale geospatial and environmental analyses.
CO4	Develop custom plugins in QGIS, manage spatial databases with PostGIS, and integrate real-time spatial data.
C05	Apply geospatial data acquisition, analysis, and visualization techniques in project development.

Mapping of course outcomes with programme outcomes							
	PO1	PO2	P03	P04	PO5	P06	
C01	2	3	2	1	2	1	
CO2	2	3	2	1	1	1	

CO3	3	2	1	2	1	2
CO4	2	3	2	1	2	1
C05	3	3	2	1	2	1

Module	e Content
1	 Geospatial Libraries in Python Geospatial libraries (e.g., Geopandas, Fiona, Shapely) Geospatial data visualization techniques Interactive geospatial data visualization with Plotly and Folium
2	 Raster and Vector Data Processing Raster and vector data analysis workflows Raster data operations and analysis with Python (using modules such as Rasterio and GDAL) Satellite data processing and analysis techniques Vector data structures and operations, analysis using Python libraries (e.g., Pyproj, Geopandas)
3	 Google Earth Engine and Python for Geospatial Programming Introduction to Google Earth Engine (GEE) and its Python API Accessing and processing large-scale satellite and geospatial datasets in GEE Developing workflows in GEE for environmental and geospatial applications Applications of GEE in land use/land cover analysis, climate studies, and resource
	management
4	 Advanced QGIS Python Programming and Spatial Databases Python programming in QGIS and plugin development Spatial database management using PostgreSQL/PostGIS Integrating Python with PostGIS for advanced spatial data management Interfacing with real-time data: Retrieving and handling data from REST APIs
Course	Project/Thesis:
Each stu problen	ident will complete a project that applies advanced geospatial programming to a specific n. Projects may include:
•	Satellite and Remote Sensing Data Analysis: Developing Python scripts to analyze satellite data (e.g., land use classification, environmental monitoring).
•	QGIS Plugin Development: Creating a custom plugin in QGIS for specialized spatial analysis or data visualization tasks.
•	Automate Geoprocessing in GEE: Using satellite data develop workflows for geoprocessing
•	Spatial Database Integration: Designing a Python-based solution that integrates PostGIS

and QGIS for efficient spatial data management and retrieval.

References:

1. Python Geospatial Analysis Cookbook, Michael Diener

2. Mastering Geospatial Analysis with Python, Paul Crickard, Eric van Rees, Silas Toms

3. QGIS Python Programming Cookbook, Joel Lawhead

Spatial Data Analytics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221253	Spatial Data Analytics	3	500	1-1-0-1

	Course Outcomes
C01	Demonstrate the ability to analyze geographic distributions, point patterns, and spatial autocorrelation using methods like nearest neighbor, kernel density, and clustering.
CO2	Apply geostatistical techniques, including semi-variogram analysis and kriging, for effective spatial data interpolation and prediction.
CO3	Utilize machine learning approaches for spatial classification, regression, and object- based image analysis (OBIA).
CO4	Conduct advanced multidimensional spatial data analysis with 3D/4D visualization and dimensionality reduction for environmental and urban applications.

M	Mapping of course outcomes with programme outcomes					
	P01	P02	P03	P04	P05	PO6
C01	2	2	3	1	2	1
C02	3	2	2	1	1	1
CO3	3	2	2	2	1	2
CO4	3	3	3	1	2	1

Module	Content
1	Geographic Distributions and Point Pattern Analysis
	Analyzing Geographic Distributions, Point Pattern Analysis
	Spatial Processes, Complete Spatial Randomness

 First- and Second-Order Effects in Spatial Data Nearest Neighbor Analysis, Ripley's K Function, L Function Transformation Kernel Density Estimation Spatial Autocorrelation and Clustering Global and Local Spatial Autocorrelation Optimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering, k-Means, Density-Based Clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Seri-variogram Analysis, Istoropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Analysis Predictive Modeling in Spatial Analysis Methods for visualizing complex spatial datasets in 3D and 4D (spacetime) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships		
 Kernel Density Estimation Spatial Autocorrelation and Clustering Global and Local Spatial Autocorrelation Optimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering, k-Means, Density-Based Clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Methods for visualizing complex spatial datasets in 3D and 4D (spacettime) contexts		 First- and Second-Order Effects in Spatial Data Nearest Neighbor Analysis, Ripley's K Function, L Function Transformation
 Spatial Autocorrelation and Clustering Global and Local Spatial Autocorrelation Optimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering, k-Means, Density-Based Clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (spacetime) complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020		Kernel Density Estimation
 Global and Local Spatial Autocorrelation Optimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering, k-Means, Density-Based Clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Data: Classification and Pagression, OBIA Predictive Modeling in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial nelationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: 1. Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 2. "Desig	2	Spatial Autocorrelation and Clustering
 Optimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering, k-Means, Density-Based Clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Multidimensional Spatial Data Analysis Multidimensional Spatial Data Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (spacetime) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Mainta		Global and Local Spatial Autocorrelation
 Cluster Anarysis: mera clustering, K-Means, Density-Dased clustering Spatial Regression Techniques Advanced Geostatistical and Machine Learning Methods Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA 		 Uptimized Hot Spot Analysis Cluster Analysis: Hierarchical Clustering & Means, Density Pased Clus
• Spatial Regression Techniques 3 Advanced Geostatistical and Machine Learning Methods • Semi-variogram Analysis, Isotropic and Anisotropic Models • Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging • Machine Learning in Spatial Data: Classification and Regression, OBIA • Predictive Modeling in Spatial Data: Classification and Regression, OBIA • Predictive Modeling in Spatial Data Analysis 4 Multidimensional Spatial Data Analysis • Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts • Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships • Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: • Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. • Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. • Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: 1 1. Data Engineering with Python" by Paul Crickard, P		• Cluster Analysis: Hierarchicar clustering, K-Means, Density-Based Clus-
3 Advanced Geostatistical and Machine Learning Methods • Semi-variogram Analysis, Isotropic and Anisotropic Models • Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging • Machine Learning in Spatial Data: Classification and Regression, OBIA • Predictive Modeling in Spatial Data: Classification and Regression, OBIA • Predictive Modeling in Spatial Analysis 4 Multidimensional Spatial Data Analysis • Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts • Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships • Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: • Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. • Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. • Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: 1. Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 3. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Ma		 Spatial Regression Techniques
 Semi-variogram Analysis, Isotropic and Anisotropic Models Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	3	Advanced Geostatistical and Machine Learning Methods
 Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (spacetime) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		Semi-variogram Analysis, Isotropic and Anisotropic Models
 Machine Learning in Spatial Data: Classification and Regression, OBIA Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		 Kriging Techniques: Ordinary, Simple, Indicator, and Cokriging
 Predictive Modeling in Spatial Analysis Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		Machine Learning in Spatial Data: Classification and Regression, OBIA
 Multidimensional Spatial Data Analysis Methods for visualizing complex spatial datasets in 3D and 4D (space-time) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		Predictive Modeling in Spatial Analysis
 Methols for Visitalizing Complex Spatial datasets in 3D and 4D (spate-time) contexts Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	4	Multidimensional Spatial Data Analysis
 Principal Component Analysis (PCA), and other methods for reducing complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		• Methods for visualizing complex spatial datasets in 5D and 4D (space- time) contexts
 complexity while preserving spatial relationships Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References:		 Principal Component Analysis (PCA), and other methods for reducing
 Urban change detection, environmental monitoring, precision agriculture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		complexity while preserving spatial relationships
ture, and ecosystem modeling Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: •Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. •Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. •Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: 1. Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 2. "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 3. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022		Urban change detection, environmental monitoring, precision agricul-
 Course Project/Thesis: Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		ture, and ecosystem modeling
 Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	C D.	
 Each student will complete a project applying spatial data analysis techniques to a selected geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	Course Pr	oject/ i nesis:
 geospatial problem. Topics may include: Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	Each stude	ent will complete a project applying spatial data analysis techniques to a selected
 Spatial Regression or Machine Learning: Implement spatial regression or machine learning algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	geospatial	problem. Topics may include:
 algorithms to address a defined geospatial issue. Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	•Spatial Re	egression or Machine Learning: Implement spatial regression or machine learning
 Geostatistical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	algorithms	to address a defined geospatial issue.
 or urban datasets to assess spatial patterns. Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	•Geostatis	tical Analytics: Conduct a geostatistical analysis, such as Kriging, on environmental
 Predictive Modeling: Develop a predictive model using spatial data for applications like land cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	or urban d	atasets to assess spatial patterns.
 cover classification or urban planning. References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	•Predictive	e Modeling: Develop a predictive model using spatial data for applications like land
 References: Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	cover class	sification or urban planning.
 Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	Reference	PS:
 "Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	1.	Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020
 Kukreja, Danil Zburivsky, Packt Publishing, 2021 3. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 	2.	"Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj
 Danil Zburivsky, Packt Publishing, 2021 3. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		Kukreja,
 "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017 "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		Danil Zburivsky, Packt Publishing, 2021
and Maintainable Systems" by Martin Kleppmann, 2017 4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022	3.	"Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,
 Maintainable Systems' by Martin Kleppmann, 2017 4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022 		and Meinteineble Contenne" has Martin VI. 2017
4. "Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022	4	Maintainable Systems" by Martin Kleppmann, 2017
111C., 2022	4.	"Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media,
	<u> </u>	IIIC., 2022

Web and Mobile GIS

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221254	Web and Mobile GIS	3	500	1-1-0-1

	Course Outcomes
C01	Design and deploy web GIS architectures
CO2	Apply standards for interoperable web GIS services
CO3	Configure and manage GIS servers and spatial databases for web-based mapping services
CO4	Integrate mobile GIS for field data collection and synchronization with Web GIS systems

N	Mapping of course outcomes with programme outcomes					
	P01	P02	P03	PO4	PO5	PO6
C01	2	3	2	1	1	2
CO2	2	2	2	1	1	1
CO3	3	3	1	1	1	2
CO4	2	1	1	2	1	2

Content			
Advanced Web GIS and Enterprise GIS Architecture			
Client-Server Computing: Advanced Architecture and Deployment			
File Transfer Models and Protocols for GIS Data			
Open Geospatial Consortium (OGC) Standards: WMS, WFS, WCS, WPS			
 Interoperable vs. Non-Interoperable Systems and Data Exchange Standards (e.g., GML, GeoISON) 			
GeoServer and Leaflet for Web GIS			
Advanced Configuration and Installation of GeoServer			
Handling and Publishing Vector and Raster Data with GeoServer			
Geoprocessing Operations and Scripting in GeoServer			
• Advanced Styling Techniques and Thematic Mapping for Web Maps			
 Developing Interactive Web Maps with Leaflet: Customization, Plugins, and User Interaction 			

3	GoeNode for Web GIS		
	Configuration and deployment of GeoNode for Web GIS Intrastructure		
	Manage and Publish Geospatial Data with GeoNode.		
	Implement Geospatial Standards for Data Interoperability in GeoNode		
	 Create and Customize GeoNode for Collaborative Data Sharing and Visuali- zation. 		
	Integrate GeoNode with Mobile GIS and Field Data Collection Systems		
4	Mobile GIS and Field Data Collection		
	Architecture and Application in Field Data Collection		
	 Mobile GIS Tools: ArcGIS Field Maps, Survey123, QField, and Locus Map 		
	 Integration of Mobile GIS with Web GIS Systems 		
	Data Synchronization and Real-Time Data Collection for Field Applications		
	 Case Studies: Applications in Environmental Monitoring, Urban Planning, and Disaster Management 		
Cours	e Project/Thesis:		
Studer	nts will undertake a project or thesis focusing on an advanced topic in Web or Mobile GIS.		
Poten	tial topics include:		
•Deve	lopment of an interactive mobile GIS solution for field data collection.		
•Imple	ementation of a Web GIS platform for real-time environmental monitoring.		
•Case	study on data synchronization and integration between Web GIS and Mobile GIS.		
Refer	ences:		
1.	Fu, P., & Wang, J. (2011). Web GIS: Principles and Applications. Esri Press.		
2.	Chasco, R. G. (2008). Enterprise GIS: Spatial Data Infrastructure Design and Implementation.		
3.	Moore, J., & Aiken, S. (2018). GeoServer Beginner's Guide: A Practical Guide to Building Geospatial		
	Web Services with GeoServer.		
4.	4. Kiesling, S. (2016). Mastering Leaflet: A Hands-on Guide to Building Interactive Web Maps with Leaflet.is.		
5.	Gómez, S., & Hernández, E. (2015). GeoNode Beginner's Guide: A Practical Guide to Build and		
	Deploy GeoNode for Collaborative Geospatial Data Sharing.		
6.	Giraud, F. (2016). GeoNode Essentials: Build a Collaborative Geospatial Data Infrastructure with		
	GeoNode.		
7.	Zhou, X., & Zhang, L. (2015). Mobile GIS: A Handbook for Developers. CRC Press.		
8.	Brovelli, M. A., Zamboni, G., & Minghini, M. (2017). Mobile Mapping and GIS: Field Data Collection		
	and Management.		

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221255	Structural Biology and Drug Design	3	500	1-1-0-1

Structural Biology and Drug Design

Course Outcomes	

C01	Demonstrate in-depth understanding of the fundamentals of drug discovery.
CO2	Apply cheminformatics and data analysis methods effectively in drug research.
CO3	Utilize computational chemistry to predict molecular structures and explore drug- target interactions.
CO4	Conduct an independent research project in drug discovery, using machine learning
l	and computational tools to identify and evaluate potential of ug candidates.

N	lapping of c	ourse outco	mes with pı	ogramme o	utcomes	
	P01	P02	P03	P04	P05	P06
C01	3	2	1	1	1	1
CO2	3	3	2	1	2	2
CO3	3	3	2	1	2	2
CO4	3	3	3	2	3	3

Module	Content
1	Stages of drug discovery process and its challenges, drug targets and their
	classification, enzyme kinetics, classification of drugs, ADMET properties of
	drugs, drug-receptor interactions
	Research Focus: Literature review on drug classification and ADMET
	advancements.
2	Structure-based and ligand-based drug design, the concept of de novo design for
	lead identification, molecular docking, molecular dynamics, pharmacophore
	mapping, QSAR, and QSPR, pharmacokinetics (ADME/T), pharmacodynamics,
	fragment-based drug design, retrosynthetic approaches.
	Research Focus: Conduct a small research project using pharmacophore mapping
	or molecular docking/dynamics simulations.
3	Role of cheminformatics in pharmaceutical research, molecular descriptors,
	machine learning approaches in drug design, molecular descriptors, fingerprint
	generation, ADME/T databases, chemical, biochemical and pharmaceutical
	databases, data mining, and visualization methods.
	Research Focus: Database creation and data mining project using
	cheminformatics databases (e.g., SMILES, PDB).

4	Computational chemistry in drug design: Classical mechanics vs quantum
	mechanics, potential energy surface-stationary point and saddle point, energy
	minimization, basis functions, basis sets, Slater type orbitals (STO) and Gaussian
	type orbitals (GTO), ab initio and semi-empirical methods, Density Functional
	theory (DFT).
	Research Focus: Computational analysis on a molecule of interest, utilizing
	Density Functional Theory (DFT).
Assessme	nt Components:
1	

Research Project (40%): Conduct an individual research project or case study focusing on innovative drug discovery or design methodologies. Deliverables include a report and presentation.

Lab Work (20%): Practical assignments on molecular modeling, docking, and cheminformatics tools.

Seminar (10%): Each student will present a selected paper or topic in a seminar format, discussing recent advancements in structural biology and drug design.

Written Exam (30%): Comprehensive exam covering theoretical concepts and practical applications.

References:

- 1. Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches, Mithun Rudrapal, Chukwuebuka Egbuna, Elsevier, ISBN: 9780323906081
- 2. A First Course in Systems Biology, Voit E, Garland Science, ISBN: 0815344678
- *3. Artificial Intelligence in Drug Design, Alexander Heifetz, Springer, ISBN:* 9781071617892

Data Security

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221256	Data Security	3	500	1-1-0-1

	Course Outcomes
C01	Analyze and apply advanced threat modeling and cryptographic techniques

	Design and implement comprehensive data storage, transmission, and lifecycle
CO2	management strategies
	Evaluate and apply secure software engineering principles and resilient network
CO3	defenses
	Handle data breaches, assess compliance frameworks, and adapt to new data security
CO4	technologies.

M	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	PO1	P02	PO3	P04	P05	PO6
C01	3	3	3	2	3	1
CO2	3	3	2	2	3	2
CO3	2	2	3	2	3	2
CO4	3	3	2	2	3	2

Module	Content
1	Data Security Frameworks and Sensitive Data - Types of sensitive data:
	personal, financial, healthcare, intellectual property, etc., Advanced
	classifications of sensitive data (e.g., genomic, biometric), standards for
	handling and protecting data types (e.g., NIST, ISO standards). Threat Modeling
	and Risk Analysis: In-depth examination of modern threats, including zero-day
	vulnerabilities, Advanced Persistent Threats (APTs), and social engineering
	tactics. Cryptographic Principles and Applications: cryptography and its role in
	data security, Symmetric vs. asymmetric encryption, Hash functions, digital
	signatures, and encryption algorithms, Access Control Mechanisms: Role-based
	access control (RBAC) and its implementation, Mandatory and discretionary
	access control, Multi-factor authentication (MFA) and its significance.
2	Secure Data Handling and Storage - Secure Data Storage: Encryption of data at rest:
	full disk encryption, database encryption, Data masking and tokenization
	techniques, Secure storage solutions: cloud storage security, on-premises storage
	best practices, Secure Data Transmission: Transport Layer Security (TLS) and
	Secure Sockets Layer (SSL), VPNs (Virtual Private Networks) for secure remote

	access, Secure file transfer protocols: SFTP, SCP, HTTPS, Data Lifecycle and
	Retention Management: Developing organization-wide retention and disposal
	policies, automated secure deletion protocols, data retention in high-compliance
	sectors, and modern challenges of digital footprints. Creation and management of
	robust disaster recovery frameworks, real-world applications, and testing in cloud-
	native and hybrid environments.
3	Network Defense and Cyber-Resilience - Zero-trust architecture, network
	segmentation, and advanced IDS/IPS with machine learning for threat
	detection. Secure Software Engineering Practices: Integration of security within
	SDLC (e.g., DevSecOps), application of formal security models, code review
	automation, and secure API development. Advanced Web and Mobile Security:
	In-depth approaches to counteract web and mobile vulnerabilities (e.g., RCE,
	server-side request forgery), security frameworks for mobile/IoT, and secure
	handling of distributed systems. Emerging Technologies in Network Security:
	Practical applications of AI/ML in threat detection, blockchain for decentralized
	security, and quantum computing impacts on network defenses.
4	Strategic Incident Response and Crisis Management: Advanced incident
	response planning, forensic tools, and stakeholder communication for high-
	impact data breaches, with focus on recovery metrics and continuous
	improvement. Data Breach Response and Forensics: Advanced breach
	containment strategies, digital forensics in varied sectors, and managing legal
	considerations in evidence handling. Compliance and Governance in Global
	Data Security: Exploration of complex compliance environments (e.g.,
	GDPR, HIPAA, CCPA in cross-border data flows), security audit practices,
	and continuous compliance monitoring systems. Innovations and Future
	Trends in Data Security: AI-driven security automation, blockchain for
	identity management, quantum-safe algorithms, and adaptive security
	strategies for emerging threats in cyber-physical systems.
Reference	es:
1. '	'Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World" by
2. '	"Cryptography and Network Security: Principles and Practice" by William Stallings.
3. '	'Web Application Security: A Beginner's Guide" by Bryan Sullivan and Vincent Liu.
4. '	"The Practice of Network Security Monitoring: Understanding Incident Detection and Response" by Richard Bejtlich.

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221257	Parallel and GPU Computing	3	500	1-1-0-1

	Course Outcomes				
C01	Comprehensive Understanding of High-Performance Computing (HPC) Foundations.				
CO2	Proficiency in Parallel Programming Models and Techniques.				
CO3	Mastery of GPU Computing and Acceleration.				
CO4	Expertise in Programme Execution Analysis and Concurrent Programming.				

N	Mapping of course outcomes with programme outcomes					
	P01	P02	P03	P04	P05	P06
C01	3	1	0	1	0	0
CO2	3	2	1	1	0	0
CO3	3	2	1	1	0	0
CO4	3	3	0	0	0	2

Module	Content
1	HPC Introduction, Architecture of a supercomputer and the performance
	comparisons. Flynn's taxonomy, vector and pipelining, Single instruction, Multiple
	data array, Multiprocessors: Shared – Memory processors, Massively parallel
	processors, Heterogeneous computer Structures. Importance of HPC Benchmark,
	Resource management in HPC, Amdahl's law, Processor Core Architecture, Memory
	hierarchy
2	OpenMP programming model: Thread parallelism, Thread variables,
	Synchronization, Reduction, Message-Passing Interface (MPI) MPI standards,
	Communicators, Point-to Point messages, Synchronization collectives, Parallel

	Algorithms: Fork-Join, Divide-Conquer, Manager-Worker, Embarrassingly parallel
	Importance of Checkpointing in HPC
3	GPU Architecture, CPU / GPU comparisons, CUDA Standard, Kernels and host-device
	communication, shared and constant memory, CUDA OpenCL / OpenACC, Kernels
	Launch parameters, GPU coding restrictions
4	Programme Execution Time: Flow of time, process scheduling, measuring time by
	interval counting operation, reading the processor timers, accuracy of processor
	timers, programme execution time with cycle counter. Concurrent programming
	with processes, Concurrent programme with Threads

References:

- 1. Sterling, Thomas, Maciej Brodowicz, and Matthew Anderson. High performance computing: modern systems and practices. Morgan Kaufmann, 2017.
- 2. Michael J Quinn. Parallel programming in C with MPI and OpenMP. Tata McGraw Hill, 2003.
- 3. Kai Hwang, Naresh Jotwani. Advanced Computer Architecture: Parallelism, Scalability, Programmemability, 2ndedition. Mcgraw-Hill Education, 2008.
- 4. Brian Tuomanen. Hands-On GPU Programming with Python and CUDA: Explore high-performance parallelcomputing with CUDE. Packt Publishing, 2018.

Numerical Linear Algebra

Course Code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221258	Numerical Linear Algebra	3	500	1-1-0-1

	Course Outcomes
C01	Analyze and perform matrix computations efficiently, ensuring acceptable speed, ac-
	curacy, and stability in numerical algorithms.
CO2	Apply advanced numerical methods for linear algebra and matrix decompositions, uti-
	lizing Python libraries for high-performance computing.
CO3	Develop and implement numerical linear algebra techniques for real-life applications,
	including image processing, PageRank algorithms, and data compression.
CO4	Explore and evaluate various matrix decomposition techniques and their applications
	in solving practical and theoretical problems.

Mapping of course outcomes with programme outcomes

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	3	3	0	0	0
CO2	3	2	2	0	0	0
CO3	3	2	2	0	0	0
CO4	3	2	2	0	0	1

Mod	Contont
Moa-	Content
ule	
	Overview of basics of matrix theory, rank of matrix, vector space, linear dependence,
1	matrix norms, condition number and stability of numerical algorithms
2	Matrix and Tensor Products, Matrix Decompositions, Accuracy, Memory use, Speed,
	Parallelization and Vectorization
	L1 Norm Induces Sparsity, LU factorization, Stability of LU, LU factorization with Piv-
	oting
3	Block Matrix Multiplication, Sparse matrices, CT Scans and Compressed Sensing,
	L1 and L2 regression, Polynomial Features,
	Regularization and Noise, Normal equations, Timing Comparison,
4	Conditioning and Stability, Full vs Reduced Factorizations, symbolic regression
Referei	nces:
1	. Numerical Linear Algebra, Lloyd N. Trefethen and David Bau, III
2	. Numerical Linear Algebra, Grégoire Allaire , Sidi Mahmoud Kaber
3	. Numerical Linear Algebra: An Introduction, Cambridge university Press, Holger Wendlend

Anomaly Detection and Fraud Analytics

Г

Т

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
------------	---------------------	---------	-------	---

M5221351	Anomaly	detection	and	3	500	1-1-0-1
	F	raudAnalytic	S			

	Course Outcomes
C01	Foundations of Anomaly Detection
CO2	Anomaly Detection Algorithms and Techniques
CO3	Fraud Detection and Analytics
CO4	Machine Learning for Fraud Detection

Mapping of course outcomes with programme outcomes							
	P01	P02	P03	PO4	PO5	P06	
C01	3	3	2	1	1	2	
C02	2	2	2	2	1	2	
C03	3	2	2	2	1	2	
CO4	2	1	1	2	1	2	
C05	3	3	2	1	1	2	

Module	Content
1	Introduction to anomalies, Data pre-processing for anomaly detection, Types of
	anomalies, Benefits and limitations of anomaly detection.
	Anomaly detection algorithms
	Statistical methods: Z-score; Interquartile range (IQR), Mean absolute deviation
	(MAD)Tukey's fences, Robust covariance estimation
2	Machine learning methods: Isolation forest, Local outlier factor (LOF), One-
	class support vector machine (OCSVM), Gaussian mixture model, One-class
	Support Vector Machines (OCSVM), Autoencoders; Time Series Anomaly
	Detection: Movingaverages, Exponential Smoothing.Seasonal decomposition
	and trend analysis.
	Techniques like ARIMA, LSTM for time series anomalies.
	Dealing with concept drift and evolving anomalies. Anomaly detection in high-
	dimensional data.
	Handling noisy data and false positives/negatives.

Introduction to fraud analytics; Types of fraud; Benefits and limitations of fraud							
analytics. Exploratory Data Analysis for Fraud Detection; Profiling data to							
identify patterns, trends, and anomalies. Unsupervised Anomaly Detection for							
Fraud: Using clustering techniques (K-Means, DBSCAN) to identify unusual							
patterns.Local Outlier Factor (LOF) and other proximity-based methods							
Model-Based Fraud Detection: Applying logistic regression and decision trees							
forfraud prediction. Ensemble methods (Random Forest, Gradient Boosting)							
for improved accuracy.							
Network Analysis for Fraud Detection, Building and analyzing graphs to							
identify unusual connections.Centrality measures and community detection.							
Time Series Analysis for Fraud Detection							
PS:							
y Detection Principles and Algorithms, By Kishan G. Mehrotra, Chilukuri K. Mohan, uang•2017							
Machine Learning: A New Look at Anomaly Detection books.google.co.in \rightarrow books Ted len Friedman \cdot 2014							

3.Anomaly Detection: Techniques and Applications, Saira Banu · 2021

Generative AI

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221352	Generative AI	3	500	1-1-0-1

Course Outcomes					
	.				
C01					
	Introduction to generative AI				
CO2	Text, Video and Image generation				
CO3	Prompt engineering				
CO4	Transformer architecture				

I

Mapping of course outcomes with programme outcomes							
	P01	P02	P03	PO4	PO5	P06	
C01	2	3	2	1	1	2	
CO2	2	2	2	2	1	2	
CO3	3	2	2	2	1	2	
CO4	2	1	1	2	1	2	

Module	Content
1	Introduction to Generative AI – Definition and Scope - Evolution and History of
	Generative AI Models - Importance of Generative AI in various domains -
	Overview of Generative AI models and their applications - GAN, VAE, GPT,
	Transformers and Diffusion models. Understanding GPT (Generative Pre-Trained
	Transformer) – Introduction to GPT and its significance – Architecture and
	Working of GPT Models – Overview of GPT variants and their use cases – ChatGPT
	– A practical application of GPT – Introduction and Significance
2	Exploring Generative AI project Life cycle - Pretraining and Finetuning Process in
	Generative AI models (GPT) – Instruction and Parameter Efficient Fine Tuning
	(PEFT) – Reinforcement Learning from Human Feedback (RLHF) – Generative AI
	Model – Evaluation Metrics – Inception Score (IS), Frechet Inception Distance
	(FID), Perplexity, Human Evaluation.
	Introduction to Prompt Engineering - Understanding the concept and significance
	of prompt engineering - Strategies for designing effective prompts - Techniques
	for controlling model behavior and output quality - Best practices for prompt
	engineering in generative AI
3	Applications and Advancements in Generative AI - Challenges and Ethical
	considerations in Generative AI – Bias and Fairness in Generative AI – Ensuring
	responsible use and deployment of Generative AI models -Future Directions and
	Open Problems in Generative AI
4	Use cases of Generative AI - Overview of various domains and industries benefiting
	from Generative AI - Generative AI in Healthcare - Generative AI in Finance -
	Generative AI in E-commerce

	Hands on Generative AI with Diffusion Models – Building an Unconditional Image						
	Generation models – Building an text guided image generation model – Building						
	an Image to Image translational model – Music generation with diffusion models.						
R	eferences:						
1.	Joseph Babcock, Raghav Bali, Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models, Packt publishing, ISBN 13: 978-1800200883, 2021.						
2.	Divit Gupta, Anushree Srivastava, The Potential of Generative AI: Transforming technology, business and art through innovative AI applications, BPB Publications, ISBN-13: 978-9355516725,2024.						
3.	Generative Adversarial Networks by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2017.						
4.	Generative AI: A Modern Approach by David Barber. Cambridge University press, 2022						

Healthcare Analytics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221353	Healthcare Analytics	3	500	1-1-0-1

Course Outcomes					
C01	Introduction to healthcare analytics				
C02	Electronic healthcare records				
CO3	Predictive techniques in healthcare				
C04	Image and signal analysis; NLP applications				

Mapping of course outcomes with programme outcomes							
	P01	P02	P03	P04	PO5	P06	
C01	3	3	2	2	1	3	
CO2	2	2	1	3	3	2	

CO3	1	2	3	3	2	1
CO4	3	2	2	1	2	2

Module	Content			
1	Introduction to Healthcare Data			
	Overview of healthcare data sources and formats; Privacy and security			
	considerations inhealthcare data; Data preprocessing and cleaning techniques for			
	healthcare data			
2				
	Electronic Health Records (EHR)			
	Introduction to Electronic Health Records (EHR) systems; EHR data structure,			
	components, and challenges; Analyzing EHR data for patient insights; Sensor Data			
	in Healthcare			
	Types of sensor data in healthcare; Collection, storage, and processing of sensor			
	dataCase studies: Analyzing sensor data for disease monitoring and prevention			
3	Predictive Analytics: Predictive modeling for disease risk assessment; Early			
	diseasedetection using ML techniques; Feature selection and model validation in			
	healthcare prediction			
	Clinical Decision Support Systems: Role of ML in clinical decision-making; Building			
	clinical decision support systems using ML; Ethical considerations in deploying ML			
	models in healthcare			
4	Image and Signal Analysis in Healthcare: Medical image analysis using ML			
	techniques Signal processing for healthcare applications; Case studies: Image			
	analysis for diseasediagnosis and treatment			
	Natural Language Processing (NLP) in Healthcare: NLP techniques for processing			
	clinicaltext data			
	Extracting information from medical texts and reports; Applications of NLP in			
	healthcareresearch and practice			
Reference				
1.	1. Healthcare Analytics for Quality and Performance Improvement by Trevor L. Strome			
Z.II Mü	Zimtroduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Müller and Sarah Guido			
3.0	3.Clinical Decision Support Systems: Theory and Practice by Eta S. Berner 4.Machine Learning and Healthcare Analytics by Kelleher, Mac Namee, and D'Arcy5.Medical Image Analysis by Atam P. Dhawan and Jasjit S. Suri 6.Natural Language Processing for Health and Life Sciences by Aakash Bansal, Karthik Raman,			
4.N				
6.N				
and	and Sumit Agarwal			

Advanced Programming

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221354	Advanced Programming	3	500	1-1-0-1

Course Outcomes		
C01	Advanced OOP features	
CO2	Lambda expressions, Error Handling, Multi threading	
CO3	Web API's	
CO4	Python coding standards and quality checking	

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	PO5	P06
C01	2	3	2	1	2	1
CO2	2	3	2	1	1	1
CO3	2	2	1	2	1	2
CO4	2	3	2	1	2	1

Module	Content
1	Advanced OOP features of Python, Inheritance, Multiple Inheritance, Polymorphism,
	Object Introspection, Dunder Methods, Method Resolution Order, Practice with
	Objects, and Extending Lists.
2	Lambda Expressions, List Comprehensions, Set and Dictionary Comprehension,
	Decorators, Multiple Decorators, Magic Methods, Collections, Higher Order
	Functions, Error Handling in Python, Generators, Practice with decorators, and
	Error Handling, Multi-threading.

3	Web APIs, Integration of Web APIs in modules, Request and Response, Status Codes,
	Custom Headers, Authentication of an API, API Keys, Practices on Visualization of
	data from a Web API to a web application module, Web Scrapping.
4	Python coding standards and best practices for code quality, Development Cycle,
	Flask Restful APIs, API Module development with MongoDB, Unit testing, Practices
	on writing Unit Tests with unit testing frameworks, and introduction to automation
	testing with Selenium and Python.

References:

- 1. Steven F Lott, Mastering Object-Oriented Python, second edition, Packt publishing, 2019.
- 2. Charles Dierbach, "Introduction to Computer Science Using Python: A Computational Problem-Solving Focus", Wiley, 2017.
- 3. Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Problem Solving withPython", McGraw Hill Education, 2018.

Thermal and Hyperspectral Remote Sensing

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221355	Thermal and Hyperspectral	3	500	1-0-1-1
	remote sensing			

	Course Outcomes
C01	Explain various concepts of thermal and hyperspectral remote sensing
C02	Understand Thermal and hyperspectral data products
CO3	Understand various application domains of thermal and hyperspectral data product
C04	Gain knowledge in thermal and hyperspectral image analysis

M	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	P01	P02	P03	P04	P05	P06
C01	3	3	2	1	2	1
CO2	2	3	2	1	1	1
CO3	2	2	1	2	3	2
CO4	3	3	2	1	2	1

Module	Content		
1	Thermal radiation principles, thermal process and properties – Characteristics of		
	thermal IRimages and factors affecting thermal images - Interaction of thermal		
	radiation with terrain elements - Thermal sensors and their characteristics -		
	MUST (Medium Scale Surface Temperature Missions) – radiometric calibration of		
	thermal scanners		
2	Thermal image and types of available data products – Interpretation of thermal		
	images - dayand night images - LST retrieval methods - Application of thermal		
	remote sensing data in crop health monitoring, pollution monitoring, oil spill		
	detection, Atmospheric modelling, SeaSurface Temperature		
3	Hyperspectral Remote Sensing – Imaging Spectroscopy – representation systems –		
	Spectral cube – Airborne and spaceborne hyperspectral sensors – Hughes		
	phenomenon - multivariate analysis for data reduction - Spectral library -		
	Hyperspectral image compression – Feature selection and feature extraction		
	techniques		
4			
	Hyperspectral Image Analysis: Calibration and normalization of hyperspectral		
	images - Observing signatures of various features and comparing with spectral		
	libraries - Spectral mapping methods: Spectral Angle Mapper (SAM), Spectral		
	Correlation mapper, Spectral Feature Filtering (SFF), Linear Spectral Unmixing		
	(LSU) - Application of hyperspectral remote sensing: Agriculture, Soils, Forestry,		
	Environmental and Resource Management		
Referenc	es:		
1. Da	le A Quattarochi and Jeffrey C Luvall, "Thermal Remote Sensing in Land surface Processes" e-		
2. Jol	ok, 2005 Laylor and Fancis, ISBN 0-203-50217-5. In A. Richards and XiupingJia, "Remote sensing digital Image Analysis – an introduction"		
fif	h edition, Springer Verlag., 2012 ISBN 978 3 642 30061 5.		
3. Ch	ein I Chang, "Hyperspectral Imaging: Techniques for Spectral Detection and Classification", wer Academic/Plenum Publishers, New York, N.Y., 2003. (ISBN: 0-306-47483-2)		
4. Ma	arcus Borengasser and William C., Hungate and Russel Watkins Hyper spectral Remote		
Set	nsing: principles and application" CRC, 2008, ISBN 13: 9781566706544.		
5. Ch 20	06 (ISBN: 9780470124628).		
6. Lig	Liguo Wang and Chunhui Zhao., Hyperspectral Image Processing, Springer, 2016.		
7. Mi	chael T, Eismann., Hyperspectral Remote Sensing, SPIE press, USA, 2012.		

Topographic Data Analysis Techniques and Applications

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221356	Topographic Data Analysis Techniques and Applications	3	500	1-1-0-1

	Course Outcomes
C01	Understanding the concepts of Elevation data products.
CO2	Able to perform Topographic Analysis from DEM
CO3	Volumetric and Bathymetric Analysis from DEM
CO4	Understanding the applications of DEM in real world problems

N	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	P01	P02	P03	P04	P05	P06
C01	3	3	2	1	1	2
CO2	2	3	3	2	2	2
CO3	3	2	2	2	1	2
CO4	2	1	1	3	2	2

Module	Content
1	Basics of Digital Elevation Model and Digital Surface Model; Terrain visualization.
	Methods of representing DEM; Image methods, Point models; Data sources and
	sampling methods for DEMs; Data registration and geo-coding;Global Elevation
	Data Sources, DSM from UAV/Drone data,LiDAR data.
2	Topographic Analysis : Contour. Slope, aspect, Hillshade, Viewshed Analysis, Line-
	of-Sight.
3	Volumetric Analysis and Computation, Cut-Fill Analysis, Bathymetric applications
	Analysis and estimation, Reservoir Volume Calculation.

г

4	Application of Digital Elevation Models in Water Resource Management, Disaster
	RiskManagement, Infrastructure planning
Refere	ences:
1.	Christopher Zhu, Chris Golc, Zhi Lin Li, Digital Terrain Modelling - Principles and Methodology,
	2004, CRC Press, ISBN - 9780415324625.
2	John n Wilson John C Gallant Terrain Analysis, Principles and Applications, 2000 JSBN - 978-

 John p Wilson, John C Gallant, Terrain Analysis, Principles and Applications, 2000, ISBN - 978-0-471-32188-0

Spatial Bigdata Analytics

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221357	Spatial Bigdata Analytics	3	500	1-1-0-1

	Course Outcomes
C01	Understanding geospatial big data basics and core concepts
CO2	Geospatial big data technologies and tools
CO3	Understanding about advanced GIS and machine learning algorithms
CO4	Open-source geospatial big data analysis and applications

Ν	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	P01	P02	P03	P04	PO5	P06
C01	3	3	2	1	2	1
CO2	3	3	2	1	1	1
CO3	3	2	1	2	1	2
CO4	3	3	2	3	2	2

Module	Content

1	Introduction to big data computing for geospatial applications					
	Spatially referenced big data, Map-reduce based problems in geospatial big data,					
	societal applications and challenges, Hadoop GIS vs parallel SDBMS, Geospark					
2	Spatial big data, Data cleaning in spatial big data					
	Challenges in using the big data in spatial technologies, Databases supporting					
	spatial data – Hive based spatial data storage, Real time query engine, workflow					
	Data partitioning and storage.					
3	Spatial data wrangling with geospark values in spatial big data, visualizations,					
	GeosparkVis					
	Decision support systems using spatial big data: Data intelligence, Machine					
	learning with spatial big data. Common algorithms such as association rule of					
	mining, clustering and classification rule etc in geospatial context					
4	Case studies with spatial big data in					
	1. Societal applications					
	2. Environment and economics					
	3. Agriculture					
	4. Distaster Management					
Reference						
	1. Chaowei, Yang et al; Introduction to GIS Programming and Fundamentals with Python					
	andArcGIS : CRC Press.					
	2. Aurelia Moser, Jon Bruner, Bill Day; Geospatial Data and Analysis; O'Reilly Media, Inc.					
	3. Zhe Jiang, Shashi Shekhar Spatial Big Data Science: Classification Techniques for Earth					
	Observation Imagery Hardcover					
	4. Hassan A Karimi,: Big Data Technologies in Geoinformatics					
	5. Sandya Ryza, Uri Laserson, Sean Owen, Josh Wills: Advanced Analytics with Spark:					
	Patternsfor Learning from Data at scale					

Geospatial Applications in Agriculture

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221358	Geospatial Applications in	3	500	1-1-0-1
	Agriculture			

Cours	e Outcomes

C01	Understanding the concepts of Agricultural Science
CO2	Familiarization of GIS and RS concepts specific to the agricultural domain
CO3	Application of learned skills to familiarize and create models in agricultural domain
CO4	Different crop disease and pest identification techniques in GIS and RS

Mapping of course outcomes with programme outcomes						
	P01	PO2	P03	P04	P05	P06
C01	3	3	2	1	3	1
CO2	3	2	1	3	1	3
CO3	3	3	2	3	2	1
CO4	2	2	1	2	1	2

Module	Content
1	Introduction: Crop Types, Cropping Patterns and cropping seasons; agricultural
	practices of major crops -various stages of crop cultivation. Crop yield monitoring,
	condition assessment, important insects and pest infection of major crops;
	Precision agriculture
2	Applications of GIS and remote sensing in agriculture - various techniques;
	spectral characteristics of leaf -structure of leaf; Vegetation indices – NDVI, SVI,
	PCA, TVI – Vegetation classification and mapping – Estimation of leaf area index,
	Biomass estimation. Detection of pest and diseases.
3	Spectral behavior of different crops and vegetation in VIS, NIR, MIR, TIR and
	Microwave regions. Microwave back scattering behavior of crop canopy – crops
	identification and crop inventory- crop acreage estimation – reflectance
	properties of stressed crops, detection of stressed plants. Land use and land cover
	analysis.
4	Digital Soil Mapping, ML/Deep Learning for soil nutrient, disease and crop yield
	prediction
Reference	es:
1.	P.Christy Nirmala Mary, P.Kannan, Geospatial Technologies for Agriculture, ISBN: 9789390082766, 2020
2.	Bhagowati Kaushik, GIS Assissted Farm Management Information System, ISBN: 9783844333695, 2012
3.	V M Abdul Hakkim, GIS Integrated Site-Specific Drip Fertigation, ISBN: 9783659261480, 2013

Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
Geospatial Applications for	3	500	2-0-0-1
Environment and Climate			
change			
Г	' itle of the course Geospatial Applications for Environment and Climate change	'itle of the courseCreditsGeospatial Applications for Environment and Climate change3	'itle of the courseCreditsLevelGeospatial Applications for Environment and Climate change3500

Geospatial Applications for Environment and Climate change

	Course Outcomes
C01	Understanding the basic aspects of Environmental GIS.
CO2	Able to apply GIS to a range of problems within the environmental sciences
CO3	Understanding the different impacts of climate change and its analysis using GISs
CO4	Understanding technical know-hows of real world environment challenges

N	lapping of c	ourse outco	mes with pr	rogramme o	utcomes	
	P01	P02	PO3	P04	PO5	P06
C01	3	2	1	-	-	-
CO2	2	3	3	-	-	-
CO3	3	1	2	-	-	-
C04	3	3	1	-	-	-

Module	Content
1	Introducing GIS in environment management, Different aspects in environment,
	applied aspects of environmental GIS, Introduction to key sources of spatial data
	related to environment management- Using public domain environmental data.
2	Environmental assessment and monitoring with GIS, Studying Spatial and
	Temporal variability of environmental data for change detection analysis,

	-					
	Environmental spatial decision support system, Impact assessment - basic					
	concepts, environmental impact assessment (EIA) methods					
3	Geospatial Technology for Climate studies, Floods and Water Resource					
	Management, Droughts and Food Security, Land Cover, land Use Change and					
	Ecosystems, Air Quality and Health					
4	Climate Change and climate adaptation planning, impacts of sea level rise, Impact					
	of rising temperature and Urban heat island, impact on public health. technical					
	approaches to formulating mitigation and adaptation strategies					
References:						
1. Mitsova, Diana, and Ann-Margaret Esnard. Geospatial Applications for Climate Adaptation						
Pla	Planning. Routledge, 2019.					

- Sundaresan, Janardhanan, et al., editors. Geospatial Technologies and Climate Change. Springer International Publishing, 2014. DOI.org (Crossref), <u>https://doi.org/10.1007/978-3-319-01689-4.</u>
- 3. Geospatial Modelling for environmental Management; case studies from south asia edited by Shruthi Kanga, Suraj Kumar Singh, GowharMeraj, Majid Farooq

Geospatial Applications for Hydrological Modeling

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221360	Geospatial Applications for Hydrological Modeling	3	500	1-1-0-1

Course Outcomes					
C01	Understanding the concepts of GIS and RS applications of hydrology				
CO2	Applying learned concepts on hydrological modeling				
CO3	Applying learned concepts on flood modeling				
CO4	Management and mitigation of hydrological phenomena				

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06

C01	3	2	1	1	1	1
CO2	2	3	3	2	1	1
CO3	3	1	2	1	1	1
CO4	3	3	1	1	1	1

Module	Content
1	Basic concepts of hydrology - aspects, parameters and sciences involved in
	hydrology, hydrologic cycle. Remote sensing and GIS applications in Water
	Resources Management; sources of hydrological data.
2	Hydrological mapping and modeling – surface water and groundwater inventory,
	watershed delineation and flow modeling, run-off estimation
3	Hydrological mapping and modeling – surface water and groundwater inventory,
	watershed delineation and flow modeling, run-off estimation.
4	Water balance - principles, components, water systems and types; global water
	balance scenario, blue and green water perspective. Assessment of water balance.
5	Flood management - potential flood zone mapping, flood risk assessment, flood
	hazard simulation; mitigation methods for flood management
Reference	
1. Joh	n G Lyon, GIS for Water Resources and Watershed management, ISBN-10 :9788184892932.

Tim Davie, Fundamentals of Hydrology 3rd edition,, ISBN-10: 0415858704, 2019.
 A. M. Gurnell and D. R. Montgomery, Hydrological Applications of GIS (Advances inHydrological

Processes) 1st edition, 2000

Geospatial Applications in Urban and Regional Planning

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221361	Geospatial Applications in Urban and Regional Planning	3	500	2-0-0-1

	Course Outcomes
C01	Understanding the basics in the field of urban and regional planning

	Get the idea regarding the different data, and its scale and technologies for urban and
CO2	regional planning
CO3	Different modeling techniques used in urban and regional planning
CO4	Management and mitigation in urban development

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	3	2	1	1	1	1
CO2	3	3	3	2	1	1
CO3	3	1	2	1	1	1
CO4	3	3	1	1	1	1

Module	Content
1	GIS and Remote Sensing in Urban and regional Planning – Overview. Basics in Urban
	Planning, Region Planning, Regions Definition Characteristics, Need for regional
	planning, Levels of planning
2	Data requirement, Dataset and Innovative technologies for urban planning and
	regional planning, High resolution satellite for mapping, Cadastral databases in
	urban areas, Levels and scales of mapping, Detection, Interpretation, Delineation
	and Analysis of different settlements – rural, urban, slum, etc
3	Urban Growth modelling, Roof Top solar Protection assessment, 3D Modelling and
	Visualization of urban areas, Database design and analysis for urban and regional
	resource mapping
4	Site selection and suitability analysis for urban development. Urban sprawl and
	change detection studies, Urban hazards and risk management through GIS – Flood
	modelling usingHydrological tools in GIS
Reference	28:

1. Henk J Scholten, John C H Stillwill, Geographical Information Systems for Urban and Regional Planning, 2007, The Geojournal Library

2. Martin Van Maarseveen, Javier Martiniz, Johannes Flack, GIS in Sustainable UrbanPlanning and Management - A Global Perspective, 2019, CRC Press, ISBN : 9781138505551

3. Mohd Aktar Ali, Kabir Mohan Sethy, Muzafir Wani, Urban Environment and SpatialScience, Ane Books Pvt Ltd, First Edition (2021), ISBN : 9390658284

AI applications in agriculture

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221362	AI applications in agriculture	3	500	1-1-0-1

	Course Outcomes					
CO1	Demonstrate a fundamental understanding of the principles and concepts of artificial					
	intelligence as applied to agriculture, distinguishing between different AI techniques and					
	their potential benefits.					
	Analyze and evaluate agricultural data using AI-driven techniques, leading to improved					
CO2	decision-making for precision farming practices.					
	Develop the ability to design and implement AI-based solutions for early detection,					
CO3	diagnosis, and management of crop diseases, thereby enhancing agricultural productivity					
	and sustainability.					
	Assess emerging trends in AI applications within the agriculture sector and demonstrate					
CO4	an awareness of ethical, social, and environmental implications associated with					
	integratingAI technologies.					

	Mapping of course outcomes with program outcomes						
	P01	PO2	P03	PO4	PO5	P06	
C01	3	3	2	2	2	1	
CO2	3	3	2	2	2	1	
CO3	3	3	2	2	2	1	
CO4	3	3	2	2	2	1	

Module	Content
1	Foundations of AI in Agriculture - Introduction to AI in Agriculture: Narrow AI
	vs. General AI, supervised learning, unsupervised learning, AI-driven crop
	monitoring, agricultural automation, precision farming, Machine Learning

	Fundamentals: Regression, classification, clustering, reinforcement learning,
	Feature engineering, model evaluation, cross-validation, Transfer learning,
	image segmentation, object detection
2	Data Analytics and Precision Agriculture - Remote Sensing and IoT in Agriculture:
	Multispectral imaging, hyperspectral imaging, LiDAR, Wireless sensor
	networks,smart sensors, data fusion, Data Preprocessing, and Feature Selection:
	Outlier detection, data normalization, data imputation, Principal Component
	Analysis (PCA), Recursive Feature Elimination (RFE), Predictive Modeling for
	Crop Management: Decision trees, random forests, gradient boosting, Support
	Vector Machines (SVM), ensemble learning, hyperparameter tuning, Decision
	Support Systems in Precision Agriculture: Geographic Information Systems
	(GIS), spatial analysis
3	Crop Health and Disease Management - Image Analysis for Disease Detection: Leaf-
	level disease recognition, plant phenotyping, hyperspectral imaging, Instance
	segmentation, transfer learning with pre-trained models, fine-tuning, Sensor-
	based Disease Detection: Disease-related stress indicators, Wireless sensor
	networks for disease monitoring, data fusion techniques, AI-driven Pest
	Management: Pest species identification, insect behavior modeling, Genetic
	algorithms for optimizing pest control schedules, swarm intelligence,
	Sustainable Agriculture and AI: Precision application of agrochemicals, site-
	specific nutrient management, Predictive models for sustainable irrigation
	practices, water use efficiency
4	Future Trends and Ethical Considerations in AI Agriculture - Emerging Trends in
	AI Agriculture: Swarm robotics, drone technology, blockchain in agriculture,
	Ethical and Social Implications: Algorithmic bias, fairness in AI, explainable AI
	in Agriculture, Data privacy regulations, digital divide, farmer livelihoods,
	Environmental Sustainability and AI: Renewable energy integration and
	climate- resilient agriculture, AI and remote sensing to assess soil erosion and
	land degradation
Referenc	es:
1. "A	rtificial Intelligence In Agriculture" by Singh Rajesh and Anita Gehlot, New India
2. "U	blishingAgency, 2020 sing R for Digital Soil Mapping". Malone. Minasny. and McBratney. Springer. ISBN: 978-
3-	319-44325-6.
3. "A	griscience Fundamentals and Applications" by L. DeVere Burton, 2009
5. "S	oil and Crop Sensing for Precision Crop Production" by Minzan Li, Chenghai Yang, Qin
Zh	ang, Springer, 2022

Computational Finance

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221363	Computational Finance	3	500	1-1-0-1

	Course Outcomes
C01	Understanding Financial Asset Dynamics and Models:
CO2	Master numerical techniques for pricing financial derivatives, particularly European options, using methods like the COS (Characteristic Function Expansion)method.
CO3	Analyze pay-off coefficients and conduct error analysis when using the COS method.
CO4	Introduce the fundamental concepts of portfolio management, including portfolio objectives, constraints, risk, and return.

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	PO5	PO6
C01	3	3	1	1	1	1
CO2	2	3	2	1	1	1
CO3	3	3	2	1	1	1
CO4	3	3	1	1	1	1

Module	Content
	Introduction to Computational Finance, Financial asset dynamics; Proportional
1	dividended model Martingales and asset prices; Black scholes option pricing equations; local volatality models

	Numerical Methods for Pricing Financial Derivatives: Pricing europian options by the
2	OS method
	Pay off coefficients, error analysis by COS methods, Numerical COS methodresults;
	Geometric Brownian Motion; Stochastic Volatility models; Introduction,CIR process of
	variance, Monte Carlo Simulation: Introduction, Simulation of CIR models
	Financial Data Analysis; Statistical Modeling of Financial Data; Time seriesanalysis
3	of financual data
	Financial forecasting; Rsik management, Types of risks, measuring risks,Fiancial
	risk management
	Portfolio Optimization: Introduction to portfolio management
4	Portfolio objectives and constraints; Risk and return; Portfolio diversification;Asset
	allocation
	Security selection; Portfolio performance evaluation; Active and passiveportfolio
	management
	Algorithmic trading; Machine learning for portfolio optimization
	References:
	1. Maheshwari, Anil. Financial Data Analytics: Theory and Application. 2nd ed. Pearson, 2023. Print
	 Benninga, Simon. Financial Modeling: Equilibrium, Capital Structure, and Asset Pricing. 3rd ed. Wiley, 2016

Data Engineering

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221364	Data Engineering	3	500	1-1-0-1

				Co	ourse Outcome	S				
CO1	Analyze,	explain,	and	apply	foundational	concepts	and	principles	of	data
	engineeri	ng.								

	Selecting, utilizing, and configuring appropriate data storage and processing
CO2	technologies for different scenarios.
	Design, construct, and manage data pipelines for efficient and reliable datamovement
CO3	and transformation.
	Analyze complex data engineering challenges, implement advanced techniques, and
CO4	optimize data processes for different use cases.

Μ	lapping of c	ourse outco	mes with pr	ogramme o	utcomes	
	P01	PO2	PO3	PO4	PO5	P06
C01	3	3	2	2	1	1
CO2	3	2	3	2	2	1
CO3	3	3	2	2	2	1
CO4	2	2	3	1	2	1

Module	Content
1	Fundamentals of Data Engineering - Introduction to Data Engineering, Data
	Lifecycle and Data Flow, Data Modeling: Conceptual, Logical, Physical, ETL
	(Extract, Transform, Load) Processes, Data Warehousing Basics, Introduction to
	Big Data Technologies, Data Quality and Data Governance
2	Data Storage and Processing - Relational Databases and SQL, NoSQL Databases
	(Document, Columnar, Key-Value, Graph), Data Lake Architecture and
	Technologies, In-Memory Databases, Introduction to Distributed Computing,
	Batch Processing vs. Stream Processing.Introduction to Apache Hadoop and
	Spark
3	Building Data Pipelines - Data Pipeline Architecture, Workflow Orchestration,
	Data Ingestion Methods (Batch and Real-time), Data Transformation and
	Enrichment, DataPipeline Monitoring and Error Handling, Introduction to Data
	Orchestration Tools (Airflow, Luigi, Prefect), Best Practices for Pipeline
	Scalability and Performance
4	Advanced Topics in Data Engineering - Data Security and Privacy, Data
	Versioningand Lineage, Microservices Architecture for Data, Data Serialization
	Formats (Avro, Parquet, JSON), Real-time Data Processing and Streaming

	Platforms, Data Warehousing and Data Lake Integration, Performance Tuning
	and Optimization Strategies
Reference	es:
1.	"Data Engineering with Python" by Paul Crickard, Packt Publishing, 2020
2.	"Data Engineering with Apache Spark, Delta Lake, and Lakehouse" by Manoj Kukreja, Danil Zburivsky, Packt Publishing, 2021
3.	"Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems" by Martin Kleppmann, 2017
4.	"Fundamentals of Data Engineering" by Joe Reis, Matt Housley, O'Reilly Media, Inc., 2022

Big Data Technologies and Cloud Computing

CourseCode	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221365	Big Data Technologies and Cloud Computing	3	500	1-1-0-1

Course Outcomes		
C01	Introducing Apache Spark	
CO2	Text Mining in Big data	
CO3	Link analysis and recommendation systems	
CO4	Introduction to cloud computing	

Mapping of course outcomes with programme outcomes						
	P01	P02	P03	P04	P05	P06
C01	3	3	2	1	2	1
CO2	3	2	1	1	1	1
CO3	3	3	1	1	1	1
CO4	3	3	2	1	2	1

Module	Content
	Introduction to Apache Hadoop and Spark, Spark Cluster, Spark Core, High level
1	architecture, Spark Context, RDD, Lazy Operation, Caching methods, Spark SQL,
	Machine Learning with pySpark, Mining of data streams
	Finding similar text items: Shingling of Documents, Similarity preserving summaries of
2	sets-Minhashing and signatures, Locality Sensitive Hashing of Documents, Distance
	measures, Locality sensitive functions
	Link Analysis: Page Rank, Computation of PageRank, Google PageRank Algorithm, Topic
3	Sensitive PageRank, Link Spam, HITS algorithm, Mining of Frequent item sets,
	Recommendation Systems
	Cloud components, Essential characteristics, Rapid elasticity, Architectural influences.
4	Benefits: scalability, simplicity, vendor, security, Limitations, Layers in cloud
	architecture, Software as a Service (SaaS), features of SaaS and benefits, Platform as a
	Service (PaaS)
Text Boo	oks:
	1. Data Analytics with Spark Using Python, By Jeffrey Aven, Addison Weley Data and Analytics series, 2018
	2. Big Data Analytics with Spark, Mohammed Guller, APress, 2015
Referen	Ces:
1.	Anand Rajaraman, Jeffrey D Ullman. Mining of Massive Datasets, Cambridge University Press 2010

Machine Learning with Graphs

Course code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221366	Machine Learning with Graphs	3	500	1-1-0-1

	Course Outcomes
C01	Understand the fundamental concepts of graphs, graph theory, and applications
CO2	Implement graph representation learning algorithms to generate meaningful
	embeddings of graph structures

CO3	Apply graph-based machine learning algorithms for tasks such as clustering, link
	prediction, classification, and generation
CO4	Develop solutions to address specific challenges and requirements in real-world
	scenarios

Mapping of course outcomes with programme outcomes						
	P01	PO2	PO3	PO4	P05	P06
C01	3	1	0	1	0	0
CO2	3	3	2	1	0	0
CO3	3	3	3	1	0	1
CO4	3	3	3	1	0	2

Module	Content
	Overview of graph theory: basic concepts, terminology, and representations.
1	Types of graphs: directed graphs, undirected graphs, weighted graphs, and their
	properties. Graph operations: node and edge attributes, graph traversal, and
	common graph algorithms. Introduction to applications of graphs: social
	networks, recommendation systems, and biological networks.
	Node embeddings: random-walk embeddings, nodezvec, matrix factorization
2	method. Graphs embedding. Graph Neural Networks (GNNs): GNN architecture,
	message-passing algorithms. Graph Convolutional Networks (GCNs):
	fundamentals of GCN architecture, message aggregation.
	Graph-based machine learning algorithms: graph clustering,
3	link prediction, node classification, graph classification, graph generation.
	Social network analysis: identifying communities, detecting anomalies, and
4	predicting influential nodes. Recommender systems: collaborative filtering and
	content-based recommendation using graph data. BioAI: protein-protein
	interaction networks, drug-target interaction prediction, and gene expression
	analysis. Graph-based anomaly detection: detecting unusual patterns and outliers
	in complex networks.

Text Books:

- 1. Hamilton, William L. *Graph representation learning*. Morgan and Claypool Publishers, 2020.
- 2. Ma, Yao, and Jiliang Tang. *Deep learning on graphs*. Cambridge University Press, 2021.

References:

1. CS224W-Machine Learning with Graphs, Stanford, Winter, 2023

Computational Nonlinear Dynamics

Course code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221367	Computational Nonlinear Dynamics	3	500	1-1-0-1

	Course Outcomes
C01	Understanding the principles of nonlinear dynamics
C02	Examining maps and flows through both analytical and computational methods
CO3	Use a diverse range of nonlinear dynamics techniques to explore and communicate insights effectively for a given dynamical system
C04	Understanding how to obtain nonlinear dynamics insights from real world datasets

	Mapping of	f course outcoi	mes with pro	gram outcomes		
	P01	P02	P03	PO4	P05	P06
C01	3	1	3	1	0	0
C02	3	3	3	1	1	0
CO3	3	3	3	3	0	0
CO4	3	2	3	1	0	0

Module	Content						
	Introduction to nonlinear dynamics, maps and difference equations, transients,						
1	attractors, parameters, bifurcations, fixed points, saddles and eigenvectors, stable						
	and unstable manifolds, strange attractors, renormalization and function space						
	Return maps, constructing 1D, 2D bifurcation diagrams, Arnold tongues, insights						
2	from bifurcations, Feigenbaum constant and applications, Feigenbaum						
	universality						
	Flows, state variables, state phase, nonintegrability, flow solvers, shadowing and						
	chaos, van der Pol oscillator, averaging theory, Lyapunov exponents, unstable						

3	periodic orbits, fractals and chaos, machine learning techniques for chaos
	prediction
	F
	Time series analysis, observer problem, delay coordinate embedding,
4	reconstruction of dynamics, estimation of embedding parameters, fractals,
	geometry of strange attractors, computing fractal dimensions, noise and filtering,
	Chaos based cryptography
Text Book	S:
1.	S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
	Chemistry, and Engineering, Westview Press, 2014.
2.	R. A. Holmgren, A First Course in Discrete Dynamical Systems, Springer, 1996
3.	E. Ott, Chaos in Dynamical Systems, Cambridge, 2002.
Reference	S:

1. S. Lynch. *Dynamical Systems with Applications using Python.* "Springer", 2018.

Stochastic Processes and Models

Course code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221368	Stochastic Processes and Models	3	500	1-1-0-1

	Course Outcomes
C01	Understand the mathematical foundations of the theory, problem, and state-
	of-the-art solutions of modern stochastic models.
CO2	Analyze and critically evaluate the building and integration of stochastic
	models, algorithms, and systems.
CO3	Design and demonstrate a stochastic model through team research projects
	and project report presentations.

Mapping of course outcomes with program outcomes						
	P01	PO2	PO3	P04	P05	P06
C01	3	2	3	2	0	0
CO2	3	3	3	2	0	0
CO3	3	3	3	3	0	0

Module	Content
	Concepts of multiple random variables. Bayesian belief networks (BBN):
1	Representation, Independence and conditional independence, Partial
	independence and other structure. Exact inference in BBN: Variable elimination,
	Pearl's algorithm, Junction tree, Recursive decomposition, Using additional
	structure.
	Concepts of multiple random variables. Bayesian belief networks (BBN):
	Representation, Independence and conditional independence, Partial
2	independence and other structure. Exact inference in BBN: Variable
	elimination, Pearl's algorithm, Junction tree, Recursive decomposition, Using
	additional structure.
	Dynamic belief networks: Particle filtering. Markov random fields (Markov
	networks): Representation (potentials), Independence and conditional
3	independence, Trees, Boltzman machines, Conditional Markov random fields.
	Inference in Markov networks. Learning Markov networks: Iterative proportional
	fitting, Cluster variational methods, Other approximations. Relational graphical
4	models.
Text Book	is second se

1. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009

- 2. D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press,
- 2012.
 - 3. D. J. C. Mackay, Information Theory, Inference, and Learning Algorithms, UK: Cambridge University Press, 2003
 - 4. J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman, 1997.

Optimization Techniques

Course code	Title of the course	Credits	Level	Credit Split Lecture-Lab- Seminar-Project
M5221369	Optimization Techniques	3	500	1-1-0-1

			C	Course Outco	omes		
C01	Understand solutions.	the	optimization	techniques	problem	and	state-of-the-art

CO2	Analyze and evaluate critically the building and integration of optimization
	techniques.
CO3	Design and demonstrate optimization techniques through team research
	projects, project reports and presentations.

Mapping of course outcomes with program outcomes						
	P01	P02	P03	PO4	P05	P06
C01	3	2	3	2	0	0
C02	3	3	3	2	0	0
C03	2	3	3	2	0	0

Module	Content			
1	Optimization - sequences and limits, derivative matrix, level sets and gradients,			
	Taylor series.			
2	Unconstrained optimization - necessary and sufficient conditions for optima,			
	convex sets, convex functions, optima of convex functions, steepest descent,			
	Newton and quasi-Newton methods, conjugate direction methods.			
3	Constrained optimization - linear and non-linear constraints, equality and			
	inequality constraints, optimality conditions.			
4	Constrained convex optimization, projected gradient methods, penalty methods.			
Text Books				
1. E. K. P. Chong and S. H. Zak, An Introduction to Optimisation, 2nd ed. India: Wiley,				
2010.				
2. D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed., Springer,				
2010.				
References				
1. S. Sra, S. Nowozin, and S. J. Wright, Optimization for Machine Learning, MIT Press,				
2012.				
2. R. Battiti and M. Brunato, The LION Way: Machine Learning Plus Intelligent Optimization,				
Createspace Independent Publishing, 2014.				

